找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning and Missing Data in Engineering Systems; Collins Achepsah Leke,Tshilidzi Marwala Book 2019 Springer Nature Switzerland AG 20

[复制链接]
楼主: negation
发表于 2025-3-25 04:10:15 | 显示全部楼层
Deep Learning and Missing Data in Engineering Systems
发表于 2025-3-25 09:52:34 | 显示全部楼层
Deep Learning and Missing Data in Engineering Systems978-3-030-01180-2Series ISSN 2197-6503 Series E-ISSN 2197-6511
发表于 2025-3-25 14:49:00 | 显示全部楼层
发表于 2025-3-25 17:21:21 | 显示全部楼层
发表于 2025-3-25 20:49:19 | 显示全部楼层
Networking Individuals and Groupsn combination with optimization algorithms to perform missing data estimation tasks. The results from these networks will be compared against those obtained from using the seven hidden-layered deep autoencoder network from the literature. The network training times are observed to increase with the increasing number of hidden layers.
发表于 2025-3-26 01:55:29 | 显示全部楼层
https://doi.org/10.1007/978-3-030-01180-2Artificial Intelligence; Missing Data Estimation; Deep Learning; Swarm Intelligence; Machine Learning; Mo
发表于 2025-3-26 04:49:33 | 显示全部楼层
Springer Nature Switzerland AG 2019
发表于 2025-3-26 12:09:21 | 显示全部楼层
Introduction to Missing Data Estimation,y a discussion of the classical missing data techniques ensued by a presentation of machine learning approaches to address the missing data problem. Subsequently, machine learning optimization techniques are presented for missing data estimation tasks.
发表于 2025-3-26 13:29:47 | 显示全部楼层
发表于 2025-3-26 18:12:22 | 显示全部楼层
Deep Learning Framework Analysis,n combination with optimization algorithms to perform missing data estimation tasks. The results from these networks will be compared against those obtained from using the seven hidden-layered deep autoencoder network from the literature. The network training times are observed to increase with the increasing number of hidden layers.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 19:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表