找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Database Systems for Advanced Applications; 28th International C Xin Wang,Maria Luisa Sapino,Hongzhi Yin Conference proceedings 2023 The Ed

[复制链接]
楼主: 使入伍
发表于 2025-3-30 11:23:54 | 显示全部楼层
Disentangled Contrastive Learning for Cross-Domain Recommendationecent research reveals that identifying domain-invariant and domain-specific features behind interactions aids in generating comprehensive user and item representations. However, we argue that existing methods fail to separate domain-invariant and domain-specific representations from each other, whi
发表于 2025-3-30 15:08:56 | 显示全部楼层
发表于 2025-3-30 18:46:10 | 显示全部楼层
Deep User and Item Inter-matching Network for CTR Predictionser interest. There are two main problems with previous works: (1) When most previous works mined interests from users’ historical behaviors, they only focus on implicit or explicit interests. (2) When most previous works mined user interests through the relationship between target users and similar
发表于 2025-3-30 21:40:40 | 显示全部楼层
发表于 2025-3-31 03:29:16 | 显示全部楼层
发表于 2025-3-31 05:21:27 | 显示全部楼层
发表于 2025-3-31 10:36:22 | 显示全部楼层
发表于 2025-3-31 15:46:29 | 显示全部楼层
Temporal-Aware Multi-behavior Contrastive Recommendation has attracted increasing attention recently. However, most existing multi-behavior recommendations only focus on the behavioral interaction itself, attempting to extract user preferences merely by modeling behaviors, while ignoring the properties of the interaction (e.g., the temporal information).
发表于 2025-3-31 20:16:11 | 显示全部楼层
发表于 2025-3-31 22:39:14 | 显示全部楼层
Who Is That Man? Lad Trouble in ,, and pplications: high-quality knowledge graphs and modeling user-item relationships. However, existing methods try to solve the above challenges by adopting unified relational rules and simple node aggregation, which cannot cope with complex structured graph data. In this paper, we propose a .nowledge g
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 09:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表