找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Database Systems for Advanced Applications; 28th International C Xin Wang,Maria Luisa Sapino,Hongzhi Yin Conference proceedings 2023 The Ed

[复制链接]
楼主: 使入伍
发表于 2025-3-23 11:53:59 | 显示全部楼层
Query2Trip: Dual-Debiased Learning for Neural Trip Recommendationhe query provided by a user, Query2Trip designs a debiased adversarial learning module by conditional guidance to alleviate this selection bias from positives (visited). The latter happens as unvisited is not equivalent to negative. Query2Trip devises a debiased contrastive learning module by negati
发表于 2025-3-23 16:06:26 | 显示全部楼层
A New Reconstruction Attack: User Latent Vector Leakage in Federated Recommendationgenerator is designed to take random vectors as inputs and outputs generated latent vectors. The generator is trained by the distance between the real victim’s gradient updates and the generated gradient updates. We explain that the generator will successfully learn the target latent vector distribu
发表于 2025-3-23 21:13:37 | 显示全部楼层
发表于 2025-3-23 22:34:44 | 显示全部楼层
发表于 2025-3-24 04:06:36 | 显示全部楼层
发表于 2025-3-24 10:28:21 | 显示全部楼层
发表于 2025-3-24 14:35:09 | 显示全部楼层
Intention-Aware User Modeling for Personalized News Recommendationerence for personalized next-news recommendations. In addition to modeling users’ reading preferences, our proposed model IPNR can also capture users’ reading intentions and the transitions over intentions for better predicting the next piece of news which may interest the user. Extensive experiment
发表于 2025-3-24 15:13:20 | 显示全部楼层
Deep User and Item Inter-matching Network for CTR Prediction by users’ historical behaviors, respectively. Then the User-to-User Network (UUN) is designed to mine user interests through the relationship between target users and similar users after representing the target users more accurately and richly. The experimental results show that the DUIIN model pro
发表于 2025-3-24 21:50:31 | 显示全部楼层
Towards Lightweight Cross-Domain Sequential Recommendation via External Attention-Enhanced Graph Coniently to capture the collaborative filtering signals of the items from both domains. To further alleviate the framework structure and aggregate the user-specific sequential pattern, we devise a novel dual-channel External Attention (EA) component, which calculates the correlation among all items vi
发表于 2025-3-24 23:16:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 08:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表