找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: CYNIC
发表于 2025-3-23 11:10:18 | 显示全部楼层
发表于 2025-3-23 15:58:56 | 显示全部楼层
发表于 2025-3-23 20:31:47 | 显示全部楼层
Sanjay W. Pimplikar,Anupama Suryanarayanar complicated training strategies, . curates a smaller yet more feature-balanced data subset, fostering the development of spuriousness-robust models. Experimental validations across key benchmarks demonstrate that . competes with or exceeds the performance of leading methods while significantly red
发表于 2025-3-23 22:49:58 | 显示全部楼层
Mathew A. Sherman,Sylvain E. Lesnétruggle to accurately estimate uncertainty when processing inputs drawn from the wild dataset. To address this issue, we introduce a novel instance-wise calibration method based on an energy model. Our method incorporates energy scores instead of softmax confidence scores, allowing for adaptive cons
发表于 2025-3-24 03:39:57 | 显示全部楼层
发表于 2025-3-24 07:59:30 | 显示全部楼层
发表于 2025-3-24 14:04:04 | 显示全部楼层
Alzheimer: 100 Years and Beyondth the proposed encoder layer and DyHead, a new dynamic TAD model, DyFADet, achieves promising performance on a series of challenging TAD benchmarks, including HACS-Segment, THUMOS14, ActivityNet-1.3, Epic-Kitchen 100, Ego4D-Moment QueriesV1.0, and FineAction. Code is released to ..
发表于 2025-3-24 17:42:12 | 显示全部楼层
,Teddy: Efficient Large-Scale Dataset Distillation via Taylor-Approximated Matching,ents to a . one. On the other hand, rather than repeatedly training a novel model in each iteration, we unveil that employing a pre-cached pool of . models, which can be generated from a . base model, enhances both time efficiency and performance concurrently, particularly when dealing with large-sc
发表于 2025-3-24 22:42:35 | 显示全部楼层
发表于 2025-3-25 02:09:00 | 显示全部楼层
,-VTON: Dynamic Semantics Disentangling for Differential Diffusion Based Virtual Try-On,to handle multiple degradations independently, thereby minimizing learning ambiguities and achieving realistic results with minimal overhead. Extensive experiments demonstrate that .-VTON significantly outperforms existing methods in both quantitative metrics and qualitative evaluations, demonstrati
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-23 18:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表