找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: CYNIC
发表于 2025-3-26 23:49:28 | 显示全部楼层
,Uncertainty Calibration with Energy Based Instance-Wise Scaling in the Wild Dataset,truggle to accurately estimate uncertainty when processing inputs drawn from the wild dataset. To address this issue, we introduce a novel instance-wise calibration method based on an energy model. Our method incorporates energy scores instead of softmax confidence scores, allowing for adaptive cons
发表于 2025-3-27 02:44:15 | 显示全部楼层
发表于 2025-3-27 06:02:30 | 显示全部楼层
,UniMD: Towards Unifying Moment Retrieval and Temporal Action Detection,ce the mutual benefits between TAD and MR. Extensive experiments demonstrate that the proposed task fusion learning scheme enables the two tasks to help each other and outperform the separately trained counterparts. Impressively, . achieves state-of-the-art results on three paired datasets Ego4D, Ch
发表于 2025-3-27 11:15:52 | 显示全部楼层
,DyFADet: Dynamic Feature Aggregation for Temporal Action Detection,th the proposed encoder layer and DyHead, a new dynamic TAD model, DyFADet, achieves promising performance on a series of challenging TAD benchmarks, including HACS-Segment, THUMOS14, ActivityNet-1.3, Epic-Kitchen 100, Ego4D-Moment QueriesV1.0, and FineAction. Code is released to ..
发表于 2025-3-27 17:03:00 | 显示全部楼层
发表于 2025-3-27 20:28:32 | 显示全部楼层
https://doi.org/10.1007/978-3-540-37652-1ures to reduce the ambiguity between foreground and background and strengthen the depth edges. Extensive experimental results on nuScenes and DDAD benchmarks show M.Depth achieves state-of-the-art performance. More results can be found in ..
发表于 2025-3-27 23:12:34 | 显示全部楼层
Colin L Masters,Konrad Beyreuthermpowers existing frameworks to support hour-long videos and pushes their upper limit with an extra context token. It is demonstrated to surpass previous methods on most of video- or image-based benchmarks. Code and models are available at ..
发表于 2025-3-28 05:07:50 | 显示全部楼层
M,Depth: Self-supervised Two-Frame ,ulti-camera ,etric Depth Estimation,ures to reduce the ambiguity between foreground and background and strengthen the depth edges. Extensive experimental results on nuScenes and DDAD benchmarks show M.Depth achieves state-of-the-art performance. More results can be found in ..
发表于 2025-3-28 10:10:55 | 显示全部楼层
,LLaMA-VID: An Image is Worth 2 Tokens in Large Language Models,mpowers existing frameworks to support hour-long videos and pushes their upper limit with an extra context token. It is demonstrated to surpass previous methods on most of video- or image-based benchmarks. Code and models are available at ..
发表于 2025-3-28 13:04:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-23 18:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表