找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Curves and Surfaces; 7th International Co Jean-Daniel Boissonnat,Patrick Chenin,Larry Schuma Conference proceedings 2012 Springer-Verlag Gm

[复制链接]
楼主: memoir
发表于 2025-3-25 04:02:50 | 显示全部楼层
发表于 2025-3-25 09:50:54 | 显示全部楼层
发表于 2025-3-25 13:28:02 | 显示全部楼层
Globally Convergent Adaptive Normal Multi-scale Transforms,urves, based on adaptivity. For one of the members in the family, we propose a concrete algorithm what the adaptive criteria should be, and provide numerical evidence for the implementation. We compare the performance of our algorithm with other normal multi-scale transforms.
发表于 2025-3-25 17:40:53 | 显示全部楼层
Curves and Surfaces978-3-642-27413-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-25 23:54:09 | 显示全部楼层
发表于 2025-3-26 00:43:52 | 显示全部楼层
https://doi.org/10.1007/978-3-319-39633-0he latter include the length, area, center of gravity and moment of inertia of the given curve. Then, we analyze the error estimates on the approximations of these properties and we validate the theoretical results by numerical examples.
发表于 2025-3-26 06:04:24 | 显示全部楼层
https://doi.org/10.1007/978-3-319-39633-0 version of the .. average considered in [12], and their development is motivated by the desire to generalize the nonlinear analysis in [3,5] to interpolatory subdivision schemes with higher than second order accuracy.
发表于 2025-3-26 11:21:36 | 显示全部楼层
A Century of Composition by Womenregular algebraic curve segments. The local technique computes pairs of polynomials with modified Taylor expansions and generates approximating circular arcs. We analyze the connection between the generated approximating arcs and the osculating circles of the algebraic curve.
发表于 2025-3-26 12:38:18 | 显示全部楼层
发表于 2025-3-26 17:11:11 | 显示全部楼层
Change and Transformation: A Synthesisurves, based on adaptivity. For one of the members in the family, we propose a concrete algorithm what the adaptive criteria should be, and provide numerical evidence for the implementation. We compare the performance of our algorithm with other normal multi-scale transforms.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 17:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表