找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Curves and Surfaces; 7th International Co Jean-Daniel Boissonnat,Patrick Chenin,Larry Schuma Conference proceedings 2012 Springer-Verlag Gm

[复制链接]
楼主: memoir
发表于 2025-3-26 23:35:12 | 显示全部楼层
,Complex Bézier Curves and the Geometry of Polynomials,oots of the polynomial dictates geometrical constraints on the shape of the control polygon. Along the work, new proofs and generalizations of the Walsh coincidence Theorem and the Grace Theorem are given. Applications of the geometry of the control polygon of complex polynomials to Bernstein type inequalities are discussed.
发表于 2025-3-27 05:04:15 | 显示全部楼层
发表于 2025-3-27 07:42:27 | 显示全部楼层
,, Nonlinear Subdivision Schemes, version of the .. average considered in [12], and their development is motivated by the desire to generalize the nonlinear analysis in [3,5] to interpolatory subdivision schemes with higher than second order accuracy.
发表于 2025-3-27 11:37:08 | 显示全部楼层
Approximating Algebraic Space Curves by Circular Arcs,regular algebraic curve segments. The local technique computes pairs of polynomials with modified Taylor expansions and generates approximating circular arcs. We analyze the connection between the generated approximating arcs and the osculating circles of the algebraic curve.
发表于 2025-3-27 16:00:47 | 显示全部楼层
发表于 2025-3-27 18:00:11 | 显示全部楼层
发表于 2025-3-28 01:58:07 | 显示全部楼层
发表于 2025-3-28 04:11:08 | 显示全部楼层
,Non-degenerate Developable Triangular Bézier Patches,In this talk we show a construction for characterising developable surfaces in the form of Bézier triangular patches. It is shown that constructions used for rectangular patches are not useful, since they provide degenerate triangular patches. Explicit constructions of non-degenerate developable triangular patches are provided.
发表于 2025-3-28 08:34:38 | 显示全部楼层
Jean-Daniel Boissonnat,Patrick Chenin,Larry SchumaFast-track conference proceedings.State-of-the-art research.Up-to-date results
发表于 2025-3-28 14:20:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 17:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表