找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Convex Integration Theory; Solutions to the h-p David Spring Book 1998 Springer Basel AG 1998 Differential topology.Manifold.Topology.diffe

[复制链接]
楼主: Guffaw
发表于 2025-3-23 10:10:55 | 显示全部楼层
Hans Müller-Steinhagen Prof. Dr.-Ing.e the .-principle for open, ample relations . ⊂ .. in case . ≥ 2. In effect, the analytic theory in Chapter III allows for controlled “large” moves in the pure derivatives ∂. /∂.. while maintaining small perturbations in all the complementary ⊥-derivatives. This analytic technique works well in spac
发表于 2025-3-23 16:48:10 | 显示全部楼层
发表于 2025-3-23 21:19:03 | 显示全部楼层
Michael Kleiber Dr.,Ralph Joh Dr. rer. Nat.a microfibration. We recall the notation introduced in I §3. A section α ∈ Γ(.) (. = id.) is . if there is a ..-section . ∈ Γ.(.) such that ... = .α ∈ Γ(..). The relation . satisfies the . if for each α ∈ Γ(.) there is a homotopy of sections .: [0,1] ↑ Γ(.), .. = α, such that the section .. is holon
发表于 2025-3-23 22:41:29 | 显示全部楼层
Michael Kleiber Dr.,Ralph Joh Dr. rer. Nat.tral result of the general theory. Recall that Theorem 7.2 is proved in the strong form i.e. the asserted homotopy is holonomic at each stage. This strong form of .-stability is exploited in §8.1.2 to develop a theory of short sections, which provides a natural context for studying non-ample relatio
发表于 2025-3-24 03:43:32 | 显示全部楼层
发表于 2025-3-24 06:59:53 | 显示全部楼层
Tony Bridgeman,P. C. Chatwin,C. Plumptonl Control theory, and we prove a general ..-Relaxation Theorem 10.2. In broadest terms the underlying analytic approximation problem for both the Relaxation Theorem and for Convex Integration theory is the following. Let . ⊂ .. and let .: [0,1] → .. be a continuous vector valued function which is di
发表于 2025-3-24 11:30:27 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-8940-7Differential topology; Manifold; Topology; differential geometry; equation; function; geometry; theorem
发表于 2025-3-24 17:40:03 | 显示全部楼层
发表于 2025-3-24 20:09:50 | 显示全部楼层
发表于 2025-3-25 01:41:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 17:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表