找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Convex Integration Theory; Solutions to the h-p David Spring Book 1998 Springer Basel AG 1998 Differential topology.Manifold.Topology.diffe

[复制链接]
查看: 26914|回复: 46
发表于 2025-3-21 18:27:58 | 显示全部楼层 |阅读模式
书目名称Convex Integration Theory
副标题Solutions to the h-p
编辑David Spring
视频videohttp://file.papertrans.cn/238/237844/237844.mp4
丛书名称Monographs in Mathematics
图书封面Titlebook: Convex Integration Theory; Solutions to the h-p David Spring Book 1998 Springer Basel AG 1998 Differential topology.Manifold.Topology.diffe
描述§1. Historical Remarks Convex Integration theory, first introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov‘s thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classification problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succes­ sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Conse­ quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of Convex Integration theory is that it applies to solve closed relations in jet spaces, including certain general classes of underdetermined non-linear systems of par­ tial di
出版日期Book 1998
关键词Differential topology; Manifold; Topology; differential geometry; equation; function; geometry; theorem
版次1
doihttps://doi.org/10.1007/978-3-0348-8940-7
isbn_softcover978-3-0348-9836-2
isbn_ebook978-3-0348-8940-7Series ISSN 1017-0480 Series E-ISSN 2296-4886
issn_series 1017-0480
copyrightSpringer Basel AG 1998
The information of publication is updating

书目名称Convex Integration Theory影响因子(影响力)




书目名称Convex Integration Theory影响因子(影响力)学科排名




书目名称Convex Integration Theory网络公开度




书目名称Convex Integration Theory网络公开度学科排名




书目名称Convex Integration Theory被引频次




书目名称Convex Integration Theory被引频次学科排名




书目名称Convex Integration Theory年度引用




书目名称Convex Integration Theory年度引用学科排名




书目名称Convex Integration Theory读者反馈




书目名称Convex Integration Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:29:25 | 显示全部楼层
发表于 2025-3-22 01:41:42 | 显示全部楼层
发表于 2025-3-22 04:46:10 | 显示全部楼层
Systems of Partial Differential Equations,for which . ≤ .− 1 (more unknown functions than equations) and are non-linear. Generically determined systems and all linear systems are systematically . i.e. these important systems are beyond the scope of the results and methods of this chapter
发表于 2025-3-22 12:15:06 | 显示全部楼层
Wilfried Roetzel,Bernhard Spangce of .-structures is itself a contractible space. Employing the lemma, one is able to glue together local .-structures in a neighbourhood of each point . ∈ . to obtain a global .-structure over ., with respect to which one constructs the map . in the above Riemann integral.
发表于 2025-3-22 13:12:22 | 显示全部楼层
Camilla M. Whittington,Katherine Belovfor which . ≤ .− 1 (more unknown functions than equations) and are non-linear. Generically determined systems and all linear systems are systematically . i.e. these important systems are beyond the scope of the results and methods of this chapter
发表于 2025-3-22 19:03:08 | 显示全部楼层
发表于 2025-3-22 21:14:25 | 显示全部楼层
发表于 2025-3-23 03:00:02 | 显示全部楼层
发表于 2025-3-23 09:17:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 15:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表