找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer-Assisted and Robotic Endoscopy; Third International Terry Peters,Guang-Zhong Yang,Jonathan McLeod Conference proceedings 2017 Spr

[复制链接]
查看: 29935|回复: 49
发表于 2025-3-21 16:27:26 | 显示全部楼层 |阅读模式
书目名称Computer-Assisted and Robotic Endoscopy
副标题Third International
编辑Terry Peters,Guang-Zhong Yang,Jonathan McLeod
视频videohttp://file.papertrans.cn/235/234468/234468.mp4
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer-Assisted and Robotic Endoscopy; Third International  Terry Peters,Guang-Zhong Yang,Jonathan McLeod Conference proceedings 2017 Spr
描述.This book constitutes the thoroughly refereed post-conference proceedings of the Third International Workshop on Computer Assisted and Robotic Endoscopy, CARE 2016, held in conjunction with MICCAI 2016, in Athens, Greece, in October 2016.. .The 11 revised full papers were carefully selected out of 13 initial submissions. The papers are organized on topical secttion such as computer vision, graphics, robotics, medical imaging, external tracking systems, medical device controls systems, information processing techniques, endoscopy planning and simulation..
出版日期Conference proceedings 2017
关键词augmented reality; automated diagnosis; computer vision; medical imaging; surgical tracking and navigati
版次1
doihttps://doi.org/10.1007/978-3-319-54057-3
isbn_softcover978-3-319-54056-6
isbn_ebook978-3-319-54057-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Computer-Assisted and Robotic Endoscopy影响因子(影响力)




书目名称Computer-Assisted and Robotic Endoscopy影响因子(影响力)学科排名




书目名称Computer-Assisted and Robotic Endoscopy网络公开度




书目名称Computer-Assisted and Robotic Endoscopy网络公开度学科排名




书目名称Computer-Assisted and Robotic Endoscopy被引频次




书目名称Computer-Assisted and Robotic Endoscopy被引频次学科排名




书目名称Computer-Assisted and Robotic Endoscopy年度引用




书目名称Computer-Assisted and Robotic Endoscopy年度引用学科排名




书目名称Computer-Assisted and Robotic Endoscopy读者反馈




书目名称Computer-Assisted and Robotic Endoscopy读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:56:53 | 显示全部楼层
The European Community and ASEAN,acy according to overlap size. In contrast to the conventional mosaicking approach, the proposed approach can produce panoramic image even in the case of 0% inter-cameras overlap. Additionally, the proposed approach is fast enough for clinical use.
发表于 2025-3-22 04:13:38 | 显示全部楼层
发表于 2025-3-22 04:48:08 | 显示全部楼层
Toussaint Houeninvo,Philippe Sèdédjiution to extend ORBSLAM to be able to reconstruct a semi-dense map of soft organs. Experimental results on in-vivo pigs, shows a robust endoscope tracking even with organs deformations and partial instrument occlusions. It also shows the reconstruction density, and accuracy against ground truth surface obtained from CT.
发表于 2025-3-22 10:19:25 | 显示全部楼层
Preoperative Diagnostic Procedures,y deep learning, achieves a balanced accuracy of 89.6% on a real clinical dataset, outperforming the (non-real-time) state of the art by 3.8% points. The latter, a combination of deep learning with optical flow tracking, yields an average balanced accuracy of 78.2% across all the validated datasets.
发表于 2025-3-22 14:57:15 | 显示全部楼层
发表于 2025-3-22 19:02:30 | 显示全部楼层
发表于 2025-3-22 22:35:00 | 显示全部楼层
发表于 2025-3-23 03:03:39 | 显示全部楼层
ORBSLAM-Based Endoscope Tracking and 3D Reconstruction,ution to extend ORBSLAM to be able to reconstruct a semi-dense map of soft organs. Experimental results on in-vivo pigs, shows a robust endoscope tracking even with organs deformations and partial instrument occlusions. It also shows the reconstruction density, and accuracy against ground truth surface obtained from CT.
发表于 2025-3-23 06:05:40 | 显示全部楼层
Real-Time Segmentation of Non-rigid Surgical Tools Based on Deep Learning and Tracking,y deep learning, achieves a balanced accuracy of 89.6% on a real clinical dataset, outperforming the (non-real-time) state of the art by 3.8% points. The latter, a combination of deep learning with optical flow tracking, yields an average balanced accuracy of 78.2% across all the validated datasets.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-9-24 00:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表