找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision -- ECCV 2010; 11th European Confer Kostas Daniilidis,Petros Maragos,Nikos Paragios Conference proceedings 2010 Springer-Ver

[复制链接]
楼主: 贫血
发表于 2025-3-25 05:12:00 | 显示全部楼层
发表于 2025-3-25 11:29:12 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/c/image/234153.jpg
发表于 2025-3-25 13:35:36 | 显示全部楼层
https://doi.org/10.1007/978-3-642-15561-1biometrics; computational imaging; face recognition; gesture recognition; illumination; image alignment; i
发表于 2025-3-25 16:05:19 | 显示全部楼层
发表于 2025-3-25 23:51:27 | 显示全部楼层
0302-9743 apers attracted an absolute record of 1,174 submissions. We describe here the selection of the accepted papers: Thirty-eight area chairs were selected coming from Europe (18), USA and Canada (16), and Asia (4). Their selection was based on the following criteria: (1) Researchers who had served at le
发表于 2025-3-26 00:26:16 | 显示全部楼层
https://doi.org/10.1007/978-3-319-68900-5ing windows throughout the input image. As such, local textures and global smoothness of the input image can be preserved simultaneously when applying the illumination transformation. Experimental results demonstrate the effectiveness of the proposed method comparing to some previous approaches.
发表于 2025-3-26 06:39:17 | 显示全部楼层
https://doi.org/10.1007/978-1-4899-3558-8or evaluation of context. Experimental results indicate that this scene dependent structure construction model eliminates spurious edges and improves performance over fully-connected and neighborhood connected Markov network.
发表于 2025-3-26 12:22:52 | 显示全部楼层
发表于 2025-3-26 15:35:02 | 显示全部楼层
发表于 2025-3-26 19:06:07 | 显示全部楼层
Learning What and How of Contextual Models for Scene Labelingor evaluation of context. Experimental results indicate that this scene dependent structure construction model eliminates spurious edges and improves performance over fully-connected and neighborhood connected Markov network.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 18:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表