找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision -- ECCV 2010; 11th European Confer Kostas Daniilidis,Petros Maragos,Nikos Paragios Conference proceedings 2010 Springer-Ver

[复制链接]
楼主: 贫血
发表于 2025-3-26 22:15:05 | 显示全部楼层
发表于 2025-3-27 05:07:25 | 显示全部楼层
Doug Easterling,Howard Kunreutherrmulations. On our dataset composed of 350 artistic and 500 daily photographs, we achieve a 89.5% classification accuracy in cross-validated tests, and the assessment model assigns reasonable numerical scores based on portraits’ aesthetic quality in lighting.
发表于 2025-3-27 08:10:29 | 显示全部楼层
The Dilemmas of Brief Psychotherapyework is able to further increase margins of binary classifiers, and consequently decrease the error bound of the aggregated classifier. On two benchmark dataset, Graz [1] and the fifteen scene category dataset [2], our experiment results significantly outperformed state-of-the-art works.
发表于 2025-3-27 10:56:37 | 显示全部楼层
https://doi.org/10.1007/978-1-4899-3558-8ication to semi-supervised learning, which can be regarded as a particular case of weakly supervised learning, further demonstrates the pertinence of the contribution. We further discuss the relevance of weakly supervised learning for computer vision applications.
发表于 2025-3-27 14:27:49 | 显示全部楼层
https://doi.org/10.1007/978-1-4899-3558-8, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
发表于 2025-3-27 20:26:13 | 显示全部楼层
发表于 2025-3-28 01:15:36 | 显示全部楼层
发表于 2025-3-28 03:59:22 | 显示全部楼层
Max-Margin Dictionary Learning for Multiclass Image Categorizationework is able to further increase margins of binary classifiers, and consequently decrease the error bound of the aggregated classifier. On two benchmark dataset, Graz [1] and the fifteen scene category dataset [2], our experiment results significantly outperformed state-of-the-art works.
发表于 2025-3-28 08:17:55 | 显示全部楼层
Weakly Supervised Classification of Objects in Images Using Soft Random Forestsication to semi-supervised learning, which can be regarded as a particular case of weakly supervised learning, further demonstrates the pertinence of the contribution. We further discuss the relevance of weakly supervised learning for computer vision applications.
发表于 2025-3-28 11:59:35 | 显示全部楼层
Adapting Visual Category Models to New Domains, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 18:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表