找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision and Machine Learning in Agriculture, Volume 3; Jagdish Chand Bansal,Mohammad Shorif Uddin Book 2023 The Editor(s) (if appl

[复制链接]
楼主: 是英寸
发表于 2025-3-28 14:50:26 | 显示全部楼层
发表于 2025-3-28 21:40:34 | 显示全部楼层
发表于 2025-3-28 23:04:53 | 显示全部楼层
发表于 2025-3-29 04:02:48 | 显示全部楼层
Grid Computing Using Terracotta, importance, feasibility, and applicability of the proposed method to identify plant diseases with affordable limits. The research found that the proposed model able to improve 4.35% detection accuracy compare to RGB colour-based images using identical deep learning-based detection model. To do so,
发表于 2025-3-29 09:18:02 | 显示全部楼层
发表于 2025-3-29 12:34:53 | 显示全部楼层
https://doi.org/10.1007/978-1-4302-0639-2oposed based on SqueezeNet, GoogleNet, and VGG-16. Based on the considered performance matrices, SqueezeNet is recommended as the most effective model among all the classifiers and networks for detecting and classifying the maturity levels of strawberries.
发表于 2025-3-29 16:46:31 | 显示全部楼层
The Definitive Guide to Terracottabust computation, convolutional neural network (CNN) model for target detection and recognition, while proximate probing is performed using a PID-based algorithm, ensuring UAV hover right above the target. The proposed framework has been developed in five successive steps by adopting Lawson’s sense,
发表于 2025-3-29 22:47:36 | 显示全部楼层
发表于 2025-3-30 02:11:10 | 显示全部楼层
Deep Learning Modeling for Gourd Species Recognition Using VGG-16,y cases, which leads urban people to get confused to recognize the vegetables properly. One instance of the most confusing vegetables is the gourd vegetables of the Cucurbitaceae family such as sponge gourd, ridge gourd, and snake gourd. Computer vision and deep learning can help in this regard thro
发表于 2025-3-30 08:04:56 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 20:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表