找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision and Machine Learning in Agriculture, Volume 3; Jagdish Chand Bansal,Mohammad Shorif Uddin Book 2023 The Editor(s) (if appl

[复制链接]
查看: 28492|回复: 54
发表于 2025-3-21 19:54:27 | 显示全部楼层 |阅读模式
书目名称Computer Vision and Machine Learning in Agriculture, Volume 3
编辑Jagdish Chand Bansal,Mohammad Shorif Uddin
视频video
概述Describes intelligent robots and drones.Discusses research outputs in precision agriculture.Presents applications of computer vision and machine learning (CV-ML) for better agricultural practices
丛书名称Algorithms for Intelligent Systems
图书封面Titlebook: Computer Vision and Machine Learning in Agriculture, Volume 3;  Jagdish Chand Bansal,Mohammad Shorif Uddin Book 2023 The Editor(s) (if appl
描述.This book is as an extension of the previous two volumes on “Computer Vision and Machine Learning in Agriculture”. This volume 3 discusses solutions to the problems of agricultural production by rendering advanced machine learning including deep learning tools and techniques. The book contains 13 chapters that focus on in-depth research outputs in precision agriculture, crop farming, horticulture, floriculture, vertical farming, animal husbandry, disease detection, plant recognition, production yield, product quality, defect assessment, and overall automation through robots and drones. The topics covered in the current volume, along with the previous volumes, are comprehensive literature for both beginners and experienced in this domain..
出版日期Book 2023
关键词Agricultural Drones and Robots; Computer Vision, Machine Learning, and Deep Learning Tools; Precision
版次1
doihttps://doi.org/10.1007/978-981-99-3754-7
isbn_softcover978-981-99-3756-1
isbn_ebook978-981-99-3754-7Series ISSN 2524-7565 Series E-ISSN 2524-7573
issn_series 2524-7565
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Computer Vision and Machine Learning in Agriculture, Volume 3影响因子(影响力)




书目名称Computer Vision and Machine Learning in Agriculture, Volume 3影响因子(影响力)学科排名




书目名称Computer Vision and Machine Learning in Agriculture, Volume 3网络公开度




书目名称Computer Vision and Machine Learning in Agriculture, Volume 3网络公开度学科排名




书目名称Computer Vision and Machine Learning in Agriculture, Volume 3被引频次




书目名称Computer Vision and Machine Learning in Agriculture, Volume 3被引频次学科排名




书目名称Computer Vision and Machine Learning in Agriculture, Volume 3年度引用




书目名称Computer Vision and Machine Learning in Agriculture, Volume 3年度引用学科排名




书目名称Computer Vision and Machine Learning in Agriculture, Volume 3读者反馈




书目名称Computer Vision and Machine Learning in Agriculture, Volume 3读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:01:21 | 显示全部楼层
Building a Custom Module Manuallyomic losses for farmers and reduced supplies for the sugar industry. In this research, we propose a solution for detecting three classes of sugarcane diseases using the YOLO algorithm. The YOLO version 8 model got a maximum accuracy of 96.67% after being trained and evaluated on a dataset of sugarca
发表于 2025-3-22 03:06:29 | 显示全部楼层
发表于 2025-3-22 08:23:56 | 显示全部楼层
Using Module Builder to Build Custom Modulesarliest to plan the food requirement of the rising population. Particularly in the field of computer vision, the deep learning approach has demonstrated superior performance over classical machine learning at identifying complicated structures in high-dimensional data. The proposed work focuses on c
发表于 2025-3-22 09:35:09 | 显示全部楼层
发表于 2025-3-22 14:30:39 | 显示全部楼层
发表于 2025-3-22 18:18:13 | 显示全部楼层
发表于 2025-3-22 22:34:46 | 显示全部楼层
Extending HTTP Sessions with Terracotta,n tasks, this research focused to identify models complexity, performance metrics and detection accuracy of deep learning-based model to detect crop diseases. Subsequently, this work implicitly depicts detection accuracy corresponds to hardware resources to ascertain trade-offs in relation to domain
发表于 2025-3-23 03:07:14 | 显示全部楼层
发表于 2025-3-23 09:26:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 20:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表