找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complexity and Real Computation; Lenore Blum,Felipe Cucker,Steve Smale Textbook 1998 Springer Science+Business Media New York 1998 algorit

[复制链接]
楼主: 揭发
发表于 2025-3-23 11:41:17 | 显示全部楼层
Algebraic Settings for the Problem “P ≠ NP?” Hilbert Nullstellensatz as a decision problem is NP-complete over . allows us to reformulate and investigate complexity questions within an algebraic framework and to develop transfer principles for complexity theory.
发表于 2025-3-23 16:20:21 | 显示全部楼层
Bézout’s Theoremex polynomial equations in .-unknowns. It is the goal of this chapter to prove Bézout’s Theorem. In Chapter 16 we use Bézout’s Theorem as a tool to derive geometric upper bounds on the number of connected components of semi-algebraic sets and complexity-theoretic lower bounds on some problems such as the Knapsack.
发表于 2025-3-23 21:34:13 | 显示全部楼层
发表于 2025-3-23 23:02:40 | 显示全部楼层
https://doi.org/10.1007/978-94-009-7915-4 Hilbert Nullstellensatz as a decision problem is NP-complete over . allows us to reformulate and investigate complexity questions within an algebraic framework and to develop transfer principles for complexity theory.
发表于 2025-3-24 03:52:06 | 显示全部楼层
https://doi.org/10.1007/978-1-4615-2476-2ex polynomial equations in .-unknowns. It is the goal of this chapter to prove Bézout’s Theorem. In Chapter 16 we use Bézout’s Theorem as a tool to derive geometric upper bounds on the number of connected components of semi-algebraic sets and complexity-theoretic lower bounds on some problems such as the Knapsack.
发表于 2025-3-24 08:30:12 | 显示全部楼层
The Shadow Optical Method of Caustics,etical construct foretold and provides a foundation for the modern general-purpose computer. Classical constructions of universal machines generally utilize computable encodings of finite sequences of integers by a single integer in finite time. These codings also ensure that our theory of finite-di
发表于 2025-3-24 11:35:07 | 显示全部楼层
发表于 2025-3-24 14:49:33 | 显示全部楼层
发表于 2025-3-24 21:46:07 | 显示全部楼层
发表于 2025-3-25 02:13:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-6 04:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表