书目名称 | Complexity and Real Computation | 编辑 | Lenore Blum,Felipe Cucker,Steve Smale | 视频video | | 概述 | Unique work on this core topic * Written by internationally recognised specialists in mathematics and computing * Provides the basics for numerous practical industrial applications, e.g. AI, robotics, | 图书封面 |  | 描述 | Computational complexity theory provides a framework for understanding the cost of solving computational problems, as measured by the requirement for resources such as time and space. The objects of study are algorithms defined within a formal model of computation. Upper bounds on the computational complexity of a problem are usually derived by constructing and analyzing specific algorithms. Meaningful lower bounds on computational complexity are harder to come by, and are not available for most problems of interest. The dominant approach in complexity theory is to consider algorithms as oper ating on finite strings of symbols from a finite alphabet. Such strings may represent various discrete objects such as integers or algebraic expressions, but cannot rep resent real or complex numbers, unless the numbers are rounded to approximate values from a discrete set. A major concern of the theory is the number of com putation steps required to solve a problem, as a function of the length of the input string. | 出版日期 | Textbook 1998 | 关键词 | algorithms; complexity; fundamental theorem; linear optimization; theoretical computer science | 版次 | 1 | doi | https://doi.org/10.1007/978-1-4612-0701-6 | isbn_softcover | 978-1-4612-6873-4 | isbn_ebook | 978-1-4612-0701-6 | copyright | Springer Science+Business Media New York 1998 |
The information of publication is updating
|
|