找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Comparative Genomics; 20th International C Katharina Jahn,Tomáš Vinař Conference proceedings 2023 The Editor(s) (if applicable) and The Aut

[复制链接]
楼主: NERVE
发表于 2025-3-23 10:37:19 | 显示全部楼层
发表于 2025-3-23 15:50:36 | 显示全部楼层
发表于 2025-3-23 18:12:12 | 显示全部楼层
CONSULT-II: Taxonomic Identification Using Locality Sensitive Hashing, of such data. Taxonomic classification requires comparing sample reads against a reference dataset of known organisms. Crucially, the genomes represented in a sample may be phylogenetically distant from their closest match in the reference set. Thus, simply mapping reads to genomes is insufficient;
发表于 2025-3-24 00:50:21 | 显示全部楼层
发表于 2025-3-24 02:40:18 | 显示全部楼层
,MoTERNN: Classifying the Mode of Cancer Evolution Using Recursive Neural Networks, patient. This evolutionary history, which takes the shape of a tree, reveals the mode of evolution of the specific cancer under study and, in turn, helps with clinical diagnosis, prognosis, and therapeutic treatment. In this study we focus on the question of determining the mode of evolution of tum
发表于 2025-3-24 08:44:56 | 显示全部楼层
发表于 2025-3-24 13:19:40 | 显示全部楼层
发表于 2025-3-24 18:47:24 | 显示全部楼层
发表于 2025-3-24 22:19:11 | 显示全部楼层
Physical Mapping of Two Nested Fixed Inversions in the X Chromosome of the Malaria Mosquito , on gene sequences of the annotated . genome. The two inversions resulted in five syntenic blocks, of which only two syntenic blocks (encompassing at least 179 annotated genes in the . genome) changed their position and orientation in the X chromosome. Analysis of the . genome revealed enrichment of
发表于 2025-3-25 01:38:24 | 显示全部楼层
,Prior Density Learning in Variational Bayesian Phylogenetic Parameters Inference,ting branch lengths and evolutionary model parameters. They also show that a flexible prior model could provide better results than a predefined prior model. Finally, the results highlight that using neural networks improves the initialization of the optimization of the prior density parameters.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 11:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表