找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cohomology of Number Fields; Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The

[复制链接]
楼主: Hypothesis
发表于 2025-3-25 06:57:45 | 显示全部楼层
Cohomology of Profinite GroupsProfinite groups are topological groups which naturally occur in algebraic number theory as Galois groups of infinite field extensions or more generally as étale fundamental groups of schemes. Their cohomology groups often contain important arithmetic information.
发表于 2025-3-25 09:20:45 | 显示全部楼层
发表于 2025-3-25 12:52:51 | 显示全部楼层
Iwasawa ModulesThe Iwasawa algebra, usually denoted by the Greek letter Λ, is the complete group algebra . of a group Γ, which is . isomorphic to .. This means that we will not specify a particular isomorphism . or, equivalently, we will not fix a topological generator . of the procyclic group Γ.
发表于 2025-3-25 19:06:27 | 显示全部楼层
Cohomology of Global FieldsHaving established the cohomology theory for local fields, we now begin its development for global fields, i.e. algebraic number fields and function fields in one variable over a finite field. The cohomology theory treats both types of fields equally.
发表于 2025-3-25 23:03:56 | 显示全部楼层
发表于 2025-3-26 03:22:19 | 显示全部楼层
https://doi.org/10.1007/978-3-540-37889-1Galois group; Galois groups; algebra; algebraic number field; algebraic number fields; algebraic number t
发表于 2025-3-26 05:35:14 | 显示全部楼层
发表于 2025-3-26 08:53:26 | 显示全部楼层
发表于 2025-3-26 13:09:12 | 显示全部楼层
A Current View of Oxygen Supply Dependencyalled . (to 1) if every open subgroup . of . contains the images ..(..) for almost all ., i.e. all but a finite number. The free products of pro-.-groups are defined by the following universal property.
发表于 2025-3-26 19:38:01 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 23:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表