找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cohomology of Number Fields; Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The

[复制链接]
查看: 6651|回复: 49
发表于 2025-3-21 19:22:41 | 显示全部楼层 |阅读模式
书目名称Cohomology of Number Fields
编辑Jürgen Neukirch,Alexander Schmidt,Kay Wingberg
视频video
概述In the words of a reviewer: “This monograph gives a very complete treatment of a vast array of central topics in algebraic number theory.There is so much material written down systematically which was
丛书名称Grundlehren der mathematischen Wissenschaften
图书封面Titlebook: Cohomology of Number Fields;  Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The
出版日期Book 2008Latest edition
关键词Galois group; Galois groups; algebra; algebraic number field; algebraic number fields; algebraic number t
版次2
doihttps://doi.org/10.1007/978-3-540-37889-1
isbn_softcover978-3-662-51745-1
isbn_ebook978-3-540-37889-1Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightThe Editor(s) (if applicable) and The Author(s) 2008
The information of publication is updating

书目名称Cohomology of Number Fields影响因子(影响力)




书目名称Cohomology of Number Fields影响因子(影响力)学科排名




书目名称Cohomology of Number Fields网络公开度




书目名称Cohomology of Number Fields网络公开度学科排名




书目名称Cohomology of Number Fields被引频次




书目名称Cohomology of Number Fields被引频次学科排名




书目名称Cohomology of Number Fields年度引用




书目名称Cohomology of Number Fields年度引用学科排名




书目名称Cohomology of Number Fields读者反馈




书目名称Cohomology of Number Fields读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:33:23 | 显示全部楼层
发表于 2025-3-22 00:34:37 | 显示全部楼层
发表于 2025-3-22 07:54:28 | 显示全部楼层
Cohomology of Local Fieldst to a discrete valuation and has a finite residue field. This covers two cases, namely .-., i.e. finite extensions of . for some prime number ., and .. in one variable over a finite field. For the basic properties of local fields we refer to [160], chapters II and V. As always, . denotes a separabl
发表于 2025-3-22 09:06:59 | 显示全部楼层
发表于 2025-3-22 15:22:29 | 显示全部楼层
Iwasawa Theory of Number Fieldse variable over a finite field. This analogy should also extend to the theory of .-functions and .-functions of global fields. If, for a function field ., one considers the corresponding smooth and proper curve ., where . is the field of constants of ., then the .-function of the curve . is a ration
发表于 2025-3-22 19:03:38 | 显示全部楼层
发表于 2025-3-22 22:26:44 | 显示全部楼层
发表于 2025-3-23 05:04:54 | 显示全部楼层
Mechanisms of Innate Immunity in Sepsis,few conceptual results. For example, there is a famous conjecture due to . which asserts that the subgroup .. of .. is a free profinite group, where .(.) is the field obtained from . by adjoining all roots of unity. This was proved by . [171] for function fields, but the conjecture is open in the number field case.
发表于 2025-3-23 07:39:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 22:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表