找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cohomology of Number Fields; Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The

[复制链接]
楼主: Hypothesis
发表于 2025-3-23 11:44:56 | 显示全部楼层
The Absolute Galois Group of a Global Fieldfew conceptual results. For example, there is a famous conjecture due to . which asserts that the subgroup .. of .. is a free profinite group, where .(.) is the field obtained from . by adjoining all roots of unity. This was proved by . [171] for function fields, but the conjecture is open in the number field case.
发表于 2025-3-23 14:05:35 | 显示全部楼层
发表于 2025-3-23 20:17:54 | 显示全部楼层
Iwasawa Theory of Number Fieldsoring with ., one obtains a .-vector space of dimension 2., where . is the genus of .. The characteristic polynomial with respect to the endomorphism .. is the essential part of the .-function of the curve ..
发表于 2025-3-24 01:25:55 | 显示全部楼层
发表于 2025-3-24 04:56:03 | 显示全部楼层
发表于 2025-3-24 06:34:41 | 显示全部楼层
发表于 2025-3-24 12:06:04 | 显示全部楼层
发表于 2025-3-24 17:17:07 | 显示全部楼层
Justin Wong MD, FRCPC,Anand Kumar MD, FRCPCThe Iwasawa algebra, usually denoted by the Greek letter Λ, is the complete group algebra . of a group Γ, which is . isomorphic to .. This means that we will not specify a particular isomorphism . or, equivalently, we will not fix a topological generator . of the procyclic group Γ.
发表于 2025-3-24 20:52:03 | 显示全部楼层
Ian Nesbitt MBBS(Hons), FRCA, DICM(UK)Having established the cohomology theory for local fields, we now begin its development for global fields, i.e. algebraic number fields and function fields in one variable over a finite field. The cohomology theory treats both types of fields equally.
发表于 2025-3-25 02:25:12 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 23:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表