找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Clifford Algebras and their Applications in Mathematical Physics; Proceedings of the T F. Brackx,R. Delanghe,H. Serras Conference proceedin

[复制链接]
楼主: Prehypertension
发表于 2025-3-28 16:11:33 | 显示全部楼层
发表于 2025-3-28 20:03:58 | 显示全部楼层
发表于 2025-3-28 23:53:52 | 显示全部楼层
发表于 2025-3-29 03:58:55 | 显示全部楼层
Responsible Consumption and Sustainabilityaces ..(Γ, ℍ(C)), where Γ is the unit sphere ..(m = 1, 2,…) and ℍ(C)) is the algebra of complex quaternions. The investigation is based on the local-trajectory method for studying the invertibility of bounded linear operators with shifts in a Hilbert space.
发表于 2025-3-29 07:37:30 | 显示全部楼层
Antonio Chamorro-Mera,Rafael Robina-Ramírez, can be expressed as a sum of products of polynomials and left and anti-left monogenic functions. Thereby, our key assumption is that Ω is special .-normal. As an application of this result, we show how the general solution of Stokes’ equations in three dimensions can be represented by two left mon
发表于 2025-3-29 13:40:14 | 显示全部楼层
发表于 2025-3-29 18:42:11 | 显示全部楼层
https://doi.org/10.1007/978-3-319-55206-4reby . is a Clifford algebra over the field of real numbers. Using a different from the usual one hypercomplex structure of .. we get by this way a natural generalization of the Cauchy approach to monogenic functions which seems to be not possible so far. Exemplary this concept applies to transfer i
发表于 2025-3-29 23:05:50 | 显示全部楼层
C*-Algebras of Nonlocal Quaternionic Convolution Type Operatorsaces ..(Γ, ℍ(C)), where Γ is the unit sphere ..(m = 1, 2,…) and ℍ(C)) is the algebra of complex quaternions. The investigation is based on the local-trajectory method for studying the invertibility of bounded linear operators with shifts in a Hilbert space.
发表于 2025-3-29 23:54:00 | 显示全部楼层
发表于 2025-3-30 04:23:03 | 显示全部楼层
Aleksandra Machnik,Anna Królikowska-TomczakQuantum multiparameter deformation of real Clifford algebras is proposed. The corresponding irreducible representations are found.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 00:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表