找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Clifford Algebras and their Applications in Mathematical Physics; Proceedings of the T F. Brackx,R. Delanghe,H. Serras Conference proceedin

[复制链接]
楼主: Prehypertension
发表于 2025-3-25 07:15:22 | 显示全部楼层
Dirac Operators and Manifolds with Boundaryr, and twisted orthogonality of Cauchy data spaces; we investigate natural spaces of global elliptic boundary value problems for Dirac operators; and we develop an index theory for transmission problems and give additivity and non-additivity theorems for the index and the η-invariant under cutting a
发表于 2025-3-25 10:57:48 | 显示全部楼层
发表于 2025-3-25 15:08:48 | 显示全部楼层
Cauchy Transforms and Bi-Axial Monogenic Power Functionsnctions have the expansion . Where . are bi-axial spherical monogenics of degree k in . and degree . in .. We define generalised Cauchy transforms for the case when the .. are independent of .:. Where ...The angular integrations are explicitly carried out and conditions for the existence of . are de
发表于 2025-3-25 18:54:48 | 显示全部楼层
Quaternionic Analysis and Transmission Problemsn integral representation of the solution using quaternionic analysis. The unknown densities in this integral representation are determined by a system of integral equations on the boundaries of the inclusions. We show that this system is equivalent to a generalized Riemann-Hilbert transmission prob
发表于 2025-3-25 20:40:04 | 显示全部楼层
发表于 2025-3-26 01:35:22 | 显示全部楼层
发表于 2025-3-26 07:26:30 | 显示全部楼层
发表于 2025-3-26 10:42:16 | 显示全部楼层
Hypercomplex Differentiabilty and its Applicationsreby . is a Clifford algebra over the field of real numbers. Using a different from the usual one hypercomplex structure of .. we get by this way a natural generalization of the Cauchy approach to monogenic functions which seems to be not possible so far. Exemplary this concept applies to transfer i
发表于 2025-3-26 16:35:44 | 显示全部楼层
发表于 2025-3-26 20:14:21 | 显示全部楼层
0168-1222 ers‘s "plat pays" . The Conference was attended by 61 participants coming from 18 countries; there were 10 main talks on invitation, 37 contributions accepted b978-94-010-4886-6978-94-011-2006-7Series ISSN 0168-1222 Series E-ISSN 2365-6425
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 00:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表