找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classical and Quantum Dynamics; From Classical Paths Walter Dittrich,Martin Reuter Textbook 20164th edition Springer International Publishi

[复制链接]
楼主: JOLT
发表于 2025-3-26 23:14:33 | 显示全部楼层
发表于 2025-3-27 03:16:37 | 显示全部楼层
,The Hamilton–Jacobi Equation,We already know that canonical transformations are useful for solving mechanical problems. We now want to look for a canonical transformation that transforms the 2. coordinates (.., ..) to 2. constant values (.., ..), e.g., to the 2. initial values . at time . = 0. Then the problem would be solved, . = .(.., .., .), . = .(.., .., .).
发表于 2025-3-27 07:27:28 | 显示全部楼层
Action-Angle Variables,In the following we will assume that the Hamiltonian does not depend explicitly on time; .∕. = 0. Then we know that the characteristic function .(.., ..) is the generator of a canonical transformation to new constant momenta .. (all .. are ignorable), and the new Hamiltonian depends only on the ..: . = . = .(..).
发表于 2025-3-27 09:46:47 | 显示全部楼层
Superconvergent Perturbation Theory, KAM Theorem (Introduction),Here we are dealing with an especially fast converging perturbation series, which is of particular importance for the proof of the KAM theorem (cf. below).
发表于 2025-3-27 15:17:55 | 显示全部楼层
Fundamental Principles of Quantum Mechanics,There are two alternative methods of quantizing a system:
发表于 2025-3-27 21:32:31 | 显示全部楼层
https://doi.org/10.1007/978-3-030-28003-1 ., ., are points in .-dimensional configuration space. Thus ..(.) describes the motion of the system, and . determines its velocity along the path in configuration space. The endpoints of the trajectory are given by ..(..) = .., and ..(..) = ...
发表于 2025-3-28 00:31:41 | 显示全部楼层
Maintaining Temporal Warehouse Models, translation . and .(..) = 0. Then the noninvariant part of the action, . is given by . and thus it immediately follows for the variation of . that . or . Here we recognize Newton’s law as nonconservation of the linear momentum: . Now it is straightforward to derive a corresponding law of nonconserv
发表于 2025-3-28 02:22:43 | 显示全部楼层
Katalin Ternai,Szabina Fodor,Ildikó Szabóparticular, we want to investigate the conditions under which a path is a minimum of the action and those under which it is merely an extremum. For illustrative purposes we consider a particle in two-dimensional real space. If we parametrize the path between points . and . by ., then Jacobi’s princi
发表于 2025-3-28 09:01:20 | 显示全部楼层
发表于 2025-3-28 13:50:51 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 20:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表