找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classical and Quantum Dynamics; From Classical Paths Walter Dittrich,Martin Reuter Textbook 20164th edition Springer International Publishi

[复制链接]
楼主: JOLT
发表于 2025-3-28 15:33:30 | 显示全部楼层
Everist Limaj,Edward W. N. Bernroider conservative, .∕. = 0, and periodic in both the unperturbed and perturbed case. In addition to periodicity, we shall require the Hamilton–Jacobi equation to be separable for the unperturbed situation. The unperturbed problem ..(..) which is described by the action-angle variables .. and .. will be
发表于 2025-3-28 19:52:08 | 显示全部楼层
发表于 2025-3-29 02:41:45 | 显示全部楼层
A Min Tjoa,Li Da Xu,Niina Maarit Novakpare the pertinent remarks about . as slow parameter in Chap. .) Accordingly, the Hamiltonian reads: . Here, . designates the “fast” action-angle variables for the unperturbed, solved problem . and the (.., ..) represent the remaining “slow” canonical variables, which do not necessarily have to be a
发表于 2025-3-29 05:52:43 | 显示全部楼层
https://doi.org/10.1007/978-3-319-49944-4rs appear in the expression for the adiabatic invariants. We now wish to begin to locally remove such resonances by trying, with the help of a canonical transformation, to go to a coordinate system which rotates with the resonant frequency.
发表于 2025-3-29 07:27:45 | 显示全部楼层
Ling Li,Li Xu,Wu He,Yong Chen,Hong Cheno-dimensional surface. If we then consider the trajectory in phase space, we are interested primarily in its piercing points through this surface. This piercing can occur repeatedly in the same direction. If the motion of the trajectory is determined by the Hamiltonian equations, then the . + 1-th p
发表于 2025-3-29 14:01:39 | 显示全部楼层
Hind Benfenatki,Frédérique Biennierconverges (according to Newton’s procedure) and thus the invariant tori are not destroyed. The KAM theorem is valid for systems with two and more degrees of freedom. However, in the following, we shall deal exclusively with the case of two degrees of freedom.
发表于 2025-3-29 18:03:31 | 显示全部楼层
发表于 2025-3-29 19:56:11 | 显示全部楼层
发表于 2025-3-30 03:28:50 | 显示全部楼层
发表于 2025-3-30 06:27:22 | 显示全部楼层
https://doi.org/10.1007/978-3-030-28003-1 ., ., are points in .-dimensional configuration space. Thus ..(.) describes the motion of the system, and . determines its velocity along the path in configuration space. The endpoints of the trajectory are given by ..(..) = .., and ..(..) = ...
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 20:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表