找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Circadian Rhythms in Bacteria and Microbiomes; Carl Hirschie Johnson,Michael Joseph Rust Book 2021 The Editor(s) (if applicable) and The A

[复制链接]
楼主: 航天飞机
发表于 2025-3-23 10:12:22 | 显示全部楼层
Diversity of Timing Systems in Cyanobacteria and Beyondhown. Moreover, homologs of cyanobacterial clock proteins are present in some Bacteria and Archaea, opening questions about the evolution of circadian rhythmicity in prokaryotes. In this chapter, we will highlight common aspects and key differences of timing systems that are based on Kai proteins.
发表于 2025-3-23 14:44:04 | 显示全部楼层
An In Vitro Approach to Elucidating Clock-Modulating Metabolites and generated a phase advance and delay respectively, in agreement with the in vivo data. Additionally, magnesium showed a role in inhibiting the KaiC phosphorylation in vitro. A possible history of clock evolution can be suggested from this finding since magnesium could directly modulate the KaiC-
发表于 2025-3-23 21:33:25 | 显示全部楼层
发表于 2025-3-24 01:19:15 | 显示全部楼层
发表于 2025-3-24 06:22:38 | 显示全部楼层
发表于 2025-3-24 08:48:54 | 显示全部楼层
https://doi.org/10.1007/978-3-663-02890-1 detrimental effects on health and have been implicated in metabolic syndrome, gastrointestinal and metabolic diseases, and cancer. In this chapter, we will cover the importance of the bi-directional relationship between circadian rhythms and the intestinal microbiota on host health and disease.
发表于 2025-3-24 14:02:50 | 显示全部楼层
ights modeling approaches and biotech applications.This book addresses multiple aspects of biological clocks in prokaryotes.. The first part of the book deals with the circadian clock system in cyanobacteria, i.e. the pioneer of bacterial clocks. Starting with the history and background of cyanobact
发表于 2025-3-24 15:00:29 | 显示全部楼层
https://doi.org/10.1007/978-3-642-66996-5C 7942 established a model system that ultimately led to the best characterized circadian clockwork at a molecular level. The conclusion of this chapter lists references to the seminal discoveries that have come from the study of cyanobacterial circadian clocks.
发表于 2025-3-24 23:05:01 | 显示全部楼层
https://doi.org/10.1007/978-3-642-69822-4a-molecular-scale slowness comes from structural regulations of steric hindrance, water molecules, and .-to-. peptide isomerization in KaiC, being related on one-to-one correspondence not only to the frequency of inter-molecular-scale rhythm of KaiA/KaiB/KaiC oscillator, but also to the frequency of cellular-scale rhythms.
发表于 2025-3-25 02:48:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 21:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表