找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Chebyshev Splines and Kolmogorov Inequalities; Sergey K. Bagdasarov Book 1998 Birkhäuser Verlag 1998 Topology.calculus.equation.function.o

[复制链接]
查看: 6821|回复: 55
发表于 2025-3-21 17:10:57 | 显示全部楼层 |阅读模式
书目名称Chebyshev Splines and Kolmogorov Inequalities
编辑Sergey K. Bagdasarov
视频video
丛书名称Operator Theory: Advances and Applications
图书封面Titlebook: Chebyshev Splines and Kolmogorov Inequalities;  Sergey K. Bagdasarov Book 1998 Birkhäuser Verlag 1998 Topology.calculus.equation.function.o
出版日期Book 1998
关键词Topology; calculus; equation; function; optimization; theorem
版次1
doihttps://doi.org/10.1007/978-3-0348-8808-0
isbn_softcover978-3-0348-9781-5
isbn_ebook978-3-0348-8808-0Series ISSN 0255-0156 Series E-ISSN 2296-4878
issn_series 0255-0156
copyrightBirkhäuser Verlag 1998
The information of publication is updating

书目名称Chebyshev Splines and Kolmogorov Inequalities影响因子(影响力)




书目名称Chebyshev Splines and Kolmogorov Inequalities影响因子(影响力)学科排名




书目名称Chebyshev Splines and Kolmogorov Inequalities网络公开度




书目名称Chebyshev Splines and Kolmogorov Inequalities网络公开度学科排名




书目名称Chebyshev Splines and Kolmogorov Inequalities被引频次




书目名称Chebyshev Splines and Kolmogorov Inequalities被引频次学科排名




书目名称Chebyshev Splines and Kolmogorov Inequalities年度引用




书目名称Chebyshev Splines and Kolmogorov Inequalities年度引用学科排名




书目名称Chebyshev Splines and Kolmogorov Inequalities读者反馈




书目名称Chebyshev Splines and Kolmogorov Inequalities读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:20:53 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-8808-0Topology; calculus; equation; function; optimization; theorem
发表于 2025-3-22 02:05:35 | 显示全部楼层
发表于 2025-3-22 08:20:26 | 显示全部楼层
发表于 2025-3-22 11:09:55 | 显示全部楼层
发表于 2025-3-22 15:44:42 | 显示全部楼层
https://doi.org/10.1007/978-1-4302-0391-9 < 1, and some interval [0, ..], .. = ..(., ω, ., .). Then, referring to the results of our paper [7] or [8], we describe the Chebyshev ω-splines of the problem (0.0) for arbitrary ω. Finally, we analyze various properties of Chebyshev ω-splines crucial in the construction of extremal functions in the Kolmogorov problem on the half-line ℝ..
发表于 2025-3-22 19:38:50 | 显示全部楼层
Design Patterns: Making CSS Easy!, the problem (0.0) for ω(.) = . by E. Landau [54] in the case . = ℝ. and J. Hadamard [31] in the case . = ℝ. A number of other elementary cases of the Kolmogorov-Landau problem for ω(.) = . are discussed by I. J. Schoenberg in [72].
发表于 2025-3-22 21:49:03 | 显示全部楼层
https://doi.org/10.1007/978-1-4302-0391-9points of alternance on the interval [0, 1]. Relying on the Rolle theorem or an application of Fredholm kernels, we give two proofs of extremality of Chebyshev perfect splines of the problem . for all 0 < . ≤ .. Then, we discuss the possibility of application of these two methods to the solution of
发表于 2025-3-23 03:23:36 | 显示全部楼层
发表于 2025-3-23 09:28:43 | 显示全部楼层
https://doi.org/10.1007/978-1-4302-0391-9 < 1, and some interval [0, ..], .. = ..(., ω, ., .). Then, referring to the results of our paper [7] or [8], we describe the Chebyshev ω-splines of the problem (0.0) for arbitrary ω. Finally, we analyze various properties of Chebyshev ω-splines crucial in the construction of extremal functions in t
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 05:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表