找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Chebyshev Splines and Kolmogorov Inequalities; Sergey K. Bagdasarov Book 1998 Birkhäuser Verlag 1998 Topology.calculus.equation.function.o

[复制链接]
楼主: Cyclone
发表于 2025-3-26 22:47:22 | 显示全部楼层
,Additive Kolmogorov—Landau Inequalities,In this chapter we first derive the numerical differentiation formulae of the form . Then we give sufficient conditions of extremality of a function . ∈ ...[0, 1] in the Kolmogorov-Landau inequalities.
发表于 2025-3-27 01:17:42 | 显示全部楼层
发表于 2025-3-27 07:38:27 | 显示全部楼层
,Maximization of Integral Functionals in ,,[,,, ,,], - ∞ ≤ ,, < ,, ≤ +∞,We describe extremal functions and rearrangements of the problem.where .. < 0 < .., and the kernel ψ has a finite number or a countable mono-tonely ordered set of points of sign changes on [.., ..], - ∞ ≤ .. < .. ≤ +∞. In particular, we give the solution of the problem (**) in the case of the entire line [.., ..] = ℝ.
发表于 2025-3-27 10:32:24 | 显示全部楼层
,Sharp Kolmogorov Inequalities in ,,,,(ℝ),Let ., .: 0 < m ≤ ., be integers. In this chapter we first describe the discrete family of Chebyshev ω-splines extremal in the problem .for certain choices of . and all concave modulii of continuity ω. Then, we characterize the extremal functions in the problem .for all . > 0 and α ∈ (0,1].
发表于 2025-3-27 16:12:51 | 显示全部楼层
,Sharp Kolmogorov-Landau Inequalities in ,,,,(,), , = ℝ ⋁ ℝ+,In this chapter we describe extremal functions and sharp Kolmogorov inequalities in the problem,. for . = 1, 2, and . = ℝ or ℝ.. We also give the corresponding optimal numerical differentation formulae for .′(.) and .″(.).
发表于 2025-3-27 18:29:11 | 显示全部楼层
发表于 2025-3-27 22:22:45 | 显示全部楼层
发表于 2025-3-28 05:46:30 | 显示全部楼层
发表于 2025-3-28 07:53:45 | 显示全部楼层
发表于 2025-3-28 11:15:12 | 显示全部楼层
Positioning: Indented, Offset, and Aligned,of the kernel . satisfy equations (5.1.2), (5.1.10) for 0 < m < r, and (5.1.14) for m = r. We give a complete proof of Theorem 6.0.1 and then point out the only distinction between the proofs of Theorems 6.0.1 for 0 < . < . and . = ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 15:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表