找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Carleman’s Formulas in Complex Analysis; Theory and Applicati Lev Aizenberg Book 1993 Springer Science+Business Media Dordrecht 1993 Comple

[复制链接]
楼主: 可入到
发表于 2025-3-26 21:26:26 | 显示全部楼层
Book 1993l to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1).
发表于 2025-3-27 02:51:33 | 显示全部楼层
发表于 2025-3-27 05:40:45 | 显示全部楼层
发表于 2025-3-27 10:04:34 | 显示全部楼层
https://doi.org/10.1007/978-3-642-41461-9uct .(.) in . from its values not on the whole boundary . as in (1.1) but on . ⊂ . only. Applying a simple, but very fruitful idea of Carleman we construct a “.” ., enabling us to eliminate in (1.1) integration over . ..
发表于 2025-3-27 14:48:15 | 显示全部楼层
发表于 2025-3-27 18:16:52 | 显示全部楼层
One-Dimensional Carleman Formulasuct .(.) in . from its values not on the whole boundary . as in (1.1) but on . ⊂ . only. Applying a simple, but very fruitful idea of Carleman we construct a “.” ., enabling us to eliminate in (1.1) integration over . ..
发表于 2025-3-28 01:52:08 | 显示全部楼层
Computing Experiment(. -2 -2.). ,belonging to the Hardy class . ,and points . from the interval [0, 1]. For functions of this class formula (30.4) (with . instead of -.) is true for 0 < . ≤ 2. It turned out that with . -1/2, . = 22 the function . could be analytically continued with good accuracy (error less than 0.1) from [0, 1] onto [0, 30].
发表于 2025-3-28 02:57:10 | 显示全部楼层
https://doi.org/10.1007/978-3-642-41461-9d the half-circle becomes the two rays [-∞, -.] and [., +∞]. Now the problem of analytic continuation to the upper half-plane of a function .(.) given in the “physical” energy domain between [-∞, -.] and [., +∞] is equivalent to the problem of analytic continuation to the semi-disk of the function. given on the half-circle.
发表于 2025-3-28 07:10:43 | 显示全部楼层
9楼
发表于 2025-3-28 12:11:40 | 显示全部楼层
9楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-4 08:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表