找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Carleman’s Formulas in Complex Analysis; Theory and Applicati Lev Aizenberg Book 1993 Springer Science+Business Media Dordrecht 1993 Comple

[复制链接]
查看: 54097|回复: 44
发表于 2025-3-21 17:40:54 | 显示全部楼层 |阅读模式
书目名称Carleman’s Formulas in Complex Analysis
副标题Theory and Applicati
编辑Lev Aizenberg
视频video
丛书名称Mathematics and Its Applications
图书封面Titlebook: Carleman’s Formulas in Complex Analysis; Theory and Applicati Lev Aizenberg Book 1993 Springer Science+Business Media Dordrecht 1993 Comple
描述Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com­ plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do­ main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1).
出版日期Book 1993
关键词Complex analysis; Mathematica; Symbol; signal processing
版次1
doihttps://doi.org/10.1007/978-94-011-1596-4
isbn_softcover978-94-010-4695-4
isbn_ebook978-94-011-1596-4
copyrightSpringer Science+Business Media Dordrecht 1993
The information of publication is updating

书目名称Carleman’s Formulas in Complex Analysis影响因子(影响力)




书目名称Carleman’s Formulas in Complex Analysis影响因子(影响力)学科排名




书目名称Carleman’s Formulas in Complex Analysis网络公开度




书目名称Carleman’s Formulas in Complex Analysis网络公开度学科排名




书目名称Carleman’s Formulas in Complex Analysis被引频次




书目名称Carleman’s Formulas in Complex Analysis被引频次学科排名




书目名称Carleman’s Formulas in Complex Analysis年度引用




书目名称Carleman’s Formulas in Complex Analysis年度引用学科排名




书目名称Carleman’s Formulas in Complex Analysis读者反馈




书目名称Carleman’s Formulas in Complex Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:10:43 | 显示全部楼层
发表于 2025-3-22 00:28:33 | 显示全部楼层
发表于 2025-3-22 05:09:33 | 显示全部楼层
发表于 2025-3-22 11:29:48 | 显示全部楼层
发表于 2025-3-22 16:24:02 | 显示全部楼层
https://doi.org/10.1007/978-3-642-41461-9Let . be a bounded domain in ℂ. with piecewise smooth boundary .. Consider a function ƒ ε .(.) and a set . ⊂ . of positive Lebesgue measure and assume that the .( .(.))-convex hull of. does not contain the coordinate origin.Then there is a function . ∊ .(.(.)) such that .(0) = 1 and
发表于 2025-3-22 20:14:18 | 显示全部楼层
发表于 2025-3-22 23:20:23 | 显示全部楼层
发表于 2025-3-23 05:26:38 | 显示全部楼层
https://doi.org/10.1007/978-3-642-41461-9The following classical assertion is well known. Let . be a bounded classical domain with smooth boundary ., and ƒ ∈ .(.). Then.for all functions . ∈ .(.) if and only if .(.) extends into the domain . as a holomorphic function of class .(.) (see, for example, [124, p. 131]).
发表于 2025-3-23 07:04:42 | 显示全部楼层
https://doi.org/10.1007/978-3-642-41461-9We state a result on the possibility of analytic continuation from a smooth curve Γ to a given circle (for example, the unit circle), which is close in meaning to the result by Fok-Kuni (see sec. 27, 4°), but can not be obtained from it by conformal mapping. It is simpler both in formulation and in manner of proving.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-4 10:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表