找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Carleman’s Formulas in Complex Analysis; Theory and Applicati Lev Aizenberg Book 1993 Springer Science+Business Media Dordrecht 1993 Comple

[复制链接]
楼主: 可入到
发表于 2025-3-23 10:52:56 | 显示全部楼层
Generalization of One-Dimensional Carleman FormulasLet . be a bounded domain in ℂ. with piecewise smooth boundary .. Consider a function ƒ ε .(.) and a set . ⊂ . of positive Lebesgue measure and assume that the .( .(.))-convex hull of. does not contain the coordinate origin.Then there is a function . ∊ .(.(.)) such that .(0) = 1 and
发表于 2025-3-23 15:07:42 | 显示全部楼层
发表于 2025-3-23 18:40:28 | 显示全部楼层
Carleman Formulas in Homogeneous DomainsLet . be a classical domain in ℂ., and . its distinguished boundary (Shilov boundary). We define the Hardy classes .(.) as follows: a function . ∈ .(.) belongs to the class HP(D), 0 < . < ∞, if
发表于 2025-3-23 23:23:50 | 显示全部楼层
发表于 2025-3-24 04:41:37 | 显示全部楼层
发表于 2025-3-24 09:30:35 | 显示全部楼层
https://doi.org/10.1007/978-3-642-41461-9hy formula (see [134, p. 205]).is valid. Let us consider on the boundary . a measurable set . of positive Lebesgue measure. The problem is to reconstruct .(.) in . from its values not on the whole boundary . as in (1.1) but on . ⊂ . only. Applying a simple, but very fruitful idea of Carleman we cons
发表于 2025-3-24 13:02:25 | 显示全部楼层
https://doi.org/10.1007/978-3-642-41461-9s involving integration over the whole boundary . of a domain . an integral representation involving integration over a set . ⊂ ., rests on the availability of a function .(.) of class .(.) satisfying two conditions (see sec. 1):
发表于 2025-3-24 18:10:32 | 显示全部楼层
发表于 2025-3-24 22:35:56 | 显示全部楼层
https://doi.org/10.1007/978-3-642-41461-90 instead of —. (see the remark in sec. 30). All computations were made with double precision. The first to be considered was the simple function . = (. -2 -2.). ,belonging to the Hardy class . ,and points . from the interval [0, 1]. For functions of this class formula (30.4) (with . instead of -.)
发表于 2025-3-24 23:09:53 | 显示全部楼层
https://doi.org/10.1007/978-3-642-41461-9ni formula for the case when M is an arc with ends on real axis. But if M = Γ is an arc in the unit disk with ends on the unit circle then we can give a simpler formula (see the beginning of example 3, sec. 1):
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-4 10:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表