找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Blind Source Separation; Advances in Theory, Ganesh R. Naik,Wenwu Wang Book 2014 Springer-Verlag Berlin Heidelberg 2014 Blind Source Separ

[复制链接]
楼主: TIBIA
发表于 2025-3-23 10:55:10 | 显示全部楼层
发表于 2025-3-23 17:40:42 | 显示全部楼层
发表于 2025-3-23 21:04:46 | 显示全部楼层
发表于 2025-3-23 23:22:19 | 显示全部楼层
发表于 2025-3-24 05:10:58 | 显示全部楼层
发表于 2025-3-24 09:36:15 | 显示全部楼层
发表于 2025-3-24 12:02:19 | 显示全部楼层
Supervised Normalization of Large-Scale Omic Datasets Using Blind Source Separationr tens of thousands of molecular features (e.g., gene expression levels) in hundreds if not thousands of patient samples. A key statistical challenge in the analysis of such large omic datasets is the presence of confounding sources of variation, which are often either unknown or only known with err
发表于 2025-3-24 15:20:55 | 显示全部楼层
Blind Source Separation Based on Dictionary Learning: A Singularity-Aware Approachorithm (SparseBSS) to separate the noise corrupted mixed sources with very little extra information. We also discuss the singularity issue in the dictionary learning process, which is one major reason for algorithm failure. Finally, two approaches are presented to address the singularity issue.
发表于 2025-3-24 22:59:58 | 显示全部楼层
Exploratory Analysis of Brain with ICApplying ICA to evoked potentials (EPs) and event-related potentials (ERPs) is presented, as well as an explanation of the ICA of natural images and its relationship with models of visual cortex is also presented. This chapter is written as a general introduction to the subject for those who want to get started in the main topics.
发表于 2025-3-25 02:42:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 13:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表