找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Blind Source Separation; Advances in Theory, Ganesh R. Naik,Wenwu Wang Book 2014 Springer-Verlag Berlin Heidelberg 2014 Blind Source Separ

[复制链接]
查看: 53867|回复: 61
发表于 2025-3-21 16:31:40 | 显示全部楼层 |阅读模式
期刊全称Blind Source Separation
期刊简称Advances in Theory,
影响因子2023Ganesh R. Naik,Wenwu Wang
视频video
发行地址Covers the latest cutting edge topics on BSS and emphasis on the open problems.Present both theory and applications with examples.Offers unique in-depth analysis of BSS/ICA topics.Includes most advanc
学科分类Signals and Communication Technology
图书封面Titlebook: Blind Source Separation; Advances in Theory,  Ganesh R. Naik,Wenwu Wang Book 2014 Springer-Verlag Berlin Heidelberg 2014 Blind Source Separ
影响因子.Blind Source Separation. intends to report the new results of the efforts on the study of Blind Source Separation (BSS). The book collects novel research ideas and some training in BSS, independent component analysis (ICA), artificial intelligence and signal processing applications. Furthermore, the research results previously scattered in many journals and conferences worldwide are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers, R&D engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms and applications of BSS. .Dr. .Ganesh R. Naik. works at University of Technology, Sydney, Australia; Dr. .Wenwu Wang. works at University of Surrey, UK..
Pindex Book 2014
The information of publication is updating

书目名称Blind Source Separation影响因子(影响力)




书目名称Blind Source Separation影响因子(影响力)学科排名




书目名称Blind Source Separation网络公开度




书目名称Blind Source Separation网络公开度学科排名




书目名称Blind Source Separation被引频次




书目名称Blind Source Separation被引频次学科排名




书目名称Blind Source Separation年度引用




书目名称Blind Source Separation年度引用学科排名




书目名称Blind Source Separation读者反馈




书目名称Blind Source Separation读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:11:21 | 显示全部楼层
Blind Source Separation Based on Dictionary Learning: A Singularity-Aware Approachurce separation problem. For the proof of concepts, the focus is on the scenario where the number of mixtures is not less than that of the sources. Based on the assumption that the sources are sparsely represented by some dictionaries, we present a joint source separation and dictionary learning alg
发表于 2025-3-22 02:30:06 | 显示全部楼层
Performance Study for Complex Independent Component Analysisblind source separation, ICA is used to separate linear instantaneous mixtures of source signals into signals that are as close as possible to the original signals. In the estimation of the so-called demixing matrix one has to distinguish two different factors:. This chapter studies both factors for
发表于 2025-3-22 07:14:47 | 显示全部楼层
Subband-Based Blind Source Separation and Permutation Alignmenticular with a focus on the inherent permutation alignment problem associated with this approach, and bring attention to the most recent developments in this area, including the joint BSS approach in solving the convolutive mixing problem.
发表于 2025-3-22 11:52:29 | 显示全部楼层
发表于 2025-3-22 14:51:45 | 显示全部楼层
Sparse Component Analysis: A General Framework for Linear and Nonlinear Blind Source Separation and set of unknown source data (one-dimensional signals, images, ...) from observed mixtures of these data, while the mixing operator has unknown parameter values. The second task is Blind Mixture Identification (BMI), which aims at estimating these unknown parameter values of the mixing operator. We p
发表于 2025-3-22 20:12:24 | 显示全部楼层
发表于 2025-3-23 00:31:24 | 显示全部楼层
Itakura-Saito Nonnegative Matrix Two-Dimensional Factorizations for Blind Single Channel Audio Separ based on nonuniform time-frequency (TF) analysis and feature extraction. Unlike conventional researches that concentrate on the use of spectrogram or its variants, we develop our separation algorithms using an alternative TF representation based on the gammatone filterbank. In particular, we show t
发表于 2025-3-23 02:30:27 | 显示全部楼层
发表于 2025-3-23 05:59:19 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 13:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表