找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Biological Networks and Pathway Analysis; Tatiana V. Tatarinova,Yuri Nikolsky Book 2017 Springer Science+Business Media LLC 2017 Protein-p

[复制链接]
楼主: Daguerreotype
发表于 2025-3-30 09:11:10 | 显示全部楼层
发表于 2025-3-30 13:35:02 | 显示全部楼层
Book 2017ble, comprehensive, and cutting-edge, .Biological Networks and Pathway Analysis .presents both “wet lab” experimental methods and computational tools in order to cover a broad spectrum of issues in this fascinating new field..
发表于 2025-3-30 17:03:18 | 显示全部楼层
https://doi.org/10.1007/978-3-476-02897-6man-readable biological networks with a structured syntax are a powerful way of representing biological information generated from high-density data. This article presents sbv IMPROVER, a crowd-verification approach for the visualization and expansion of biological networks.
发表于 2025-3-30 21:17:30 | 显示全部楼层
»Nichts Drittes … in der Natur?«s annotating proteins with unknown function. The prediction models are represented in the form of human-readable rules, and they can be used effectively to add absent pathway information to many proteins in UniProtKB/TrEMBL database.
发表于 2025-3-31 02:33:43 | 显示全部楼层
发表于 2025-3-31 06:53:13 | 显示全部楼层
sbv IMPROVER: Modern Approach to Systems Biology,man-readable biological networks with a structured syntax are a powerful way of representing biological information generated from high-density data. This article presents sbv IMPROVER, a crowd-verification approach for the visualization and expansion of biological networks.
发表于 2025-3-31 12:48:44 | 显示全部楼层
Rule Mining Techniques to Predict Prokaryotic Metabolic Pathways,s annotating proteins with unknown function. The prediction models are represented in the form of human-readable rules, and they can be used effectively to add absent pathway information to many proteins in UniProtKB/TrEMBL database.
发表于 2025-3-31 16:21:25 | 显示全部楼层
Comprehensive Analyses of Tissue-Specific Networks with Implications to Psychiatric Diseases,ion to statistical and combinatorial issues in data analyses. This chapter describes computational approaches developed by us and the others to tackle challenges in tissue-specific network analyses, with the main focus on psychiatric diseases.
发表于 2025-3-31 20:02:28 | 显示全部楼层
发表于 2025-3-31 22:25:48 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 11:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表