找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Big Data; 11th CCF Conference, Enhong Chen,Yang Gao,Wanqi Yang Conference proceedings 2023 The Editor(s) (if applicable) and The Author(s),

[复制链接]
楼主: 讨论小组
发表于 2025-3-26 21:39:43 | 显示全部楼层
发表于 2025-3-27 04:58:15 | 显示全部楼层
发表于 2025-3-27 08:21:35 | 显示全部楼层
发表于 2025-3-27 12:54:31 | 显示全部楼层
Sara K. Howe,Antonnet Renae Johnsonty question remains a big challenge in existing KT models. This study is based on the observation that KT shows a stronger sequential dependence in the long term than in the short term. In this paper, we propose a novel KT model called “Long-term and Short-term perception in knowledge tracing (LSKT)
发表于 2025-3-27 13:36:51 | 显示全部楼层
Sara K. Howe,Antonnet Renae Johnson domains such as energy consumption, network traffic, and solar radiation. The framework is compared with the conventional self-built MVMD-hybrid framework in terms of ARIMA model fitting time and normalized root mean square error (NRMSE) for forecasting accuracy. The results demonstrate that the pr
发表于 2025-3-27 18:52:50 | 显示全部楼层
Sara K. Howe,Antonnet Renae Johnsonperimental results show that the accuracy, specificity and AUC of the GA-DCNN reach 0.91, 0.94 and 0.93, respectively. Compared with traditional CNN, GA-DCNN can capture the detailed features of DR lesions and integrate the classification results of the multiple DCNNs, effectively improving the dete
发表于 2025-3-28 00:10:03 | 显示全部楼层
Sara K. Howe,Antonnet Renae Johnsoneliability of high-level feature information are maintained. 2) Attention pyramid: pass the detailed information of low-level features in a bottom-up path to enhance the feature representation; 3) ROI feature refinement: dropblock and zoom-in are used for feature refinement to effectively eliminate
发表于 2025-3-28 04:41:39 | 显示全部楼层
发表于 2025-3-28 09:25:37 | 显示全部楼层
发表于 2025-3-28 10:49:31 | 显示全部楼层
Scrutinizing the Disabled Body in e classifier’s own features on model performance, which is integrated in a deep graph convolutional network that contains multiple layers of the same simplified graph network architecture and a nonlinear function that can be recursively optimized. Extensive experiments show that our approach still y
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 10:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表