找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Big Data; 11th CCF Conference, Enhong Chen,Yang Gao,Wanqi Yang Conference proceedings 2023 The Editor(s) (if applicable) and The Author(s),

[复制链接]
楼主: 讨论小组
发表于 2025-3-25 03:37:59 | 显示全部楼层
,A Study of Electricity Theft Detection Method Based on Anomaly Transformer,ployment of smart meters has led to the collection of massive amounts of electricity consumption data, which can help identify electricity theft. However, the challenge of detecting electricity theft is heightened by the category imbalance in the electricity consumption data collected. In this study
发表于 2025-3-25 07:48:53 | 显示全部楼层
发表于 2025-3-25 12:57:56 | 显示全部楼层
发表于 2025-3-25 18:05:38 | 显示全部楼层
,A Transfer Learning Enhanced Decomposition-Based Hybrid Framework for Forecasting Multiple Time-Ser domains such as energy consumption, network traffic, and solar radiation. The framework is compared with the conventional self-built MVMD-hybrid framework in terms of ARIMA model fitting time and normalized root mean square error (NRMSE) for forecasting accuracy. The results demonstrate that the pr
发表于 2025-3-25 21:44:36 | 显示全部楼层
发表于 2025-3-26 02:06:47 | 显示全部楼层
The Convolutional Neural Network Combing Feature-Aligned and Attention Pyramid for Fine-Grained Viseliability of high-level feature information are maintained. 2) Attention pyramid: pass the detailed information of low-level features in a bottom-up path to enhance the feature representation; 3) ROI feature refinement: dropblock and zoom-in are used for feature refinement to effectively eliminate
发表于 2025-3-26 04:37:35 | 显示全部楼层
OCWYOLO: A Road Depression Detection Method,ed attention mechanisms to existing components without increasing the complexity of the model and achieving the goal of improving accuracy. In addition, we conducted a large number of experiments to verify the superiority of our model. We not only compare it on our road depression dataset but also c
发表于 2025-3-26 09:26:18 | 显示全部楼层
发表于 2025-3-26 12:46:00 | 显示全部楼层
发表于 2025-3-26 18:41:14 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 10:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表