找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Attacks and Defenses for the Internet-of-Things; 5th International Wo Wenjuan Li,Steven Furnell,Weizhi Meng Conference proceedings 2022 The

[复制链接]
楼主: 寓言
发表于 2025-3-26 22:15:00 | 显示全部楼层
发表于 2025-3-27 01:42:29 | 显示全部楼层
发表于 2025-3-27 06:10:27 | 显示全部楼层
Pierre Lemée,Raphaël Charron,Arnaud BridierAttack Analyzer (Indicators Of Attack)” rules describing security incidents (signatures) using Sigma language and integrated with the MITRE ATT &CK database. The developed technique allows mapping the events detected in the system under analysis to the MITRE ATT &CK attack patterns and in prospect f
发表于 2025-3-27 10:25:33 | 显示全部楼层
,The Final Round: Benchmarking NIST LWC Ciphers on Microcontrollers,e-art to the novel LWC ciphers. Our research gives an overview over the performance of the latest software implementations of the NIST LWC finalists and shows under which circumstances which candidate is performing the best in our individual test cases. Additionally, we make all benchmarking results
发表于 2025-3-27 14:23:09 | 显示全部楼层
发表于 2025-3-27 18:30:00 | 显示全部楼层
发表于 2025-3-28 01:13:19 | 显示全部楼层
,Constraints and Evaluations on Signature Transmission Interval for Aggregate Signatures with Interathat the time required for the feedback is 605.3 ms for a typical parameter setting, which indicates that if the acceptable feedback time is significantly larger than a few hundred ms, the existing FT-AS scheme would effectively work in such systems. However, there are situations where such feedback
发表于 2025-3-28 04:30:07 | 显示全部楼层
发表于 2025-3-28 09:53:59 | 显示全部楼层
,Effective Segmentation of RSSI Timeseries Produced by Stationary IoT Nodes: Comparative Study, must consider breaking down a given RSSI dataset into its constituting sub-segments. Unfortunately, the effect of environmental variables on RSSI values tend to be random, which makes the problem of RSSI timeseries segmentation even more challenging. Thus, it is necessary to study the effectiveness
发表于 2025-3-28 13:30:18 | 显示全部楼层
,Resource Efficient Federated Deep Learning for IoT Security Monitoring,ed edge nodes. The performance was evaluated using various realistic IoT and non-IoT benchmark datasets on virtual and testbed environments build with GB-BXBT-2807 edge-computing-like devices. The experimental results show that the proposed method can reduce memory usage by 81% in the simulated envi
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 17:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表