用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II; Volume II Vladimir Maz’ya,Serguei Nazarov,

[复制链接]
查看: 28040|回复: 45
发表于 2025-3-21 16:11:04 | 显示全部楼层 |阅读模式
期刊全称Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II
期刊简称Volume II
影响因子2023Vladimir Maz’ya,Serguei Nazarov,Boris A. Plamenevs
视频video
学科分类Operator Theory: Advances and Applications
图书封面Titlebook: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II; Volume II Vladimir Maz’ya,Serguei Nazarov,
影响因子.For the first time in the mathematical literature this two-volume work introduces a unified and general approach to the asymptotic analysis of elliptic boundary value problems in singularly perturbed domains. While the first volume is devoted to perturbations of the boundary near isolated singular points, this second volume treats singularities of the boundary in higher dimensions as well as nonlocal perturbations..At the core of this book are solutions of elliptic boundary value problems by asymptotic expansion in powers of a small parameter that characterizes the perturbation of the domain. In particular, it treats the important special cases of  thin domains, domains with small cavities, inclusions or ligaments, rounded corners and edges, and problems with rapid oscillations of the boundary or the coefficients of the differential operator. The methods presented here capitalize on the theory of elliptic boundary value problems with nonsmooth boundary that has been developed in the past thirty years. .Moreover, a study on the homogenization of differential and difference equations on periodic grids and lattices is given. Much attention is paid to concrete problems in mathematical
Pindex Book 2000
The information of publication is updating

书目名称Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II影响因子(影响力)




书目名称Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II影响因子(影响力)学科排名




书目名称Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II网络公开度




书目名称Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II网络公开度学科排名




书目名称Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II被引频次




书目名称Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II被引频次学科排名




书目名称Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II年度引用




书目名称Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II年度引用学科排名




书目名称Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II读者反馈




书目名称Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:31:55 | 显示全部楼层
0255-0156 the homogenization of differential and difference equations on periodic grids and lattices is given. Much attention is paid to concrete problems in mathematical978-3-0348-9564-4978-3-0348-8432-7Series ISSN 0255-0156 Series E-ISSN 2296-4878
发表于 2025-3-22 03:24:08 | 显示全部楼层
Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume IIVolume II
发表于 2025-3-22 06:23:59 | 显示全部楼层
发表于 2025-3-22 10:47:56 | 显示全部楼层
发表于 2025-3-22 13:38:32 | 显示全部楼层
Drawing from an Urn is Isometric, we provide compatibility conditions for the two first problems. In the general case, the role of the third limit problem can be played by a problem with small parameter by the derivatives of higher order, algebraic or differential equations on the boundary of a section, etc. (Section 16.3 contains the corresponding examples.)
发表于 2025-3-22 18:29:03 | 显示全部楼层
发表于 2025-3-22 22:54:50 | 显示全部楼层
发表于 2025-3-23 04:38:15 | 显示全部楼层
发表于 2025-3-23 06:04:48 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-13 08:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表