找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II; Volume II Vladimir Maz’ya,Serguei Nazarov,

[复制链接]
楼主: Truman
发表于 2025-3-23 11:18:03 | 显示全部楼层
发表于 2025-3-23 16:09:06 | 显示全部楼层
发表于 2025-3-23 18:44:15 | 显示全部楼层
General Elliptic Problems in Thin Domains, we provide compatibility conditions for the two first problems. In the general case, the role of the third limit problem can be played by a problem with small parameter by the derivatives of higher order, algebraic or differential equations on the boundary of a section, etc. (Section 16.3 contains the corresponding examples.)
发表于 2025-3-23 22:27:34 | 显示全部楼层
发表于 2025-3-24 04:54:17 | 显示全部楼层
发表于 2025-3-24 07:43:52 | 显示全部楼层
Homogenization of a Differential Operator on a Fine Periodic Net of Curvesre-cloth. On its segments there are given some ordinary second order differential equations. At the nodes, the sum of the flows rates is equal to zero. Finally, we impose the homogeneous Dirichlet condition at the boundary points.
发表于 2025-3-24 12:13:03 | 显示全部楼层
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/b/image/163835.jpg
发表于 2025-3-24 15:30:04 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-8432-7Boundary value problem; Partial differential equations; difference equation; differential equation; diff
发表于 2025-3-24 21:00:28 | 显示全部楼层
978-3-0348-9564-4Birkh�user Verlag 2000
发表于 2025-3-25 00:31:28 | 显示全部楼层
A New Foundation for Finitary CorecursionIn this chapter we begin to study the asymptotics of solutions to elliptic problems in domains perturbed near multidimensional singularities of the boundary. As such singularities, one takes edges of various dimensions on the boundary of an n-dimensional domain Ω or smooth .-dimensional submanifolds within Ω, 1 ≤ . ≤ . — 2.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 12:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表