用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence and Natural Language; 6th Conference, AINL Andrey Filchenkov,Lidia Pivovarova,Jan Žižka Conference proceedings 2018

[复制链接]
楼主: 巡洋
发表于 2025-3-28 18:05:06 | 显示全部楼层
https://doi.org/10.1007/978-90-368-3041-6vantage of both methods. This paper proposes to obtain low-level feature representation feeding frame-level descriptor sequences to a Long Short-Term Memory (LSTM) network, combine the outcome with the Principal Component Analysis (PCA) representation of utterance-level features, and make the final prediction with a logistic regression classifier.
发表于 2025-3-28 22:08:48 | 显示全部楼层
发表于 2025-3-29 01:13:48 | 显示全部楼层
发表于 2025-3-29 07:00:19 | 显示全部楼层
Deep Learning for Acoustic Addressee Detection in Spoken Dialogue Systemslization to increase the training speed. A fully-connected neural network reaches an average recall of 0.78, a Long Short-Term Memory neural network shows an average recall of 0.65. Advantages and disadvantages of both architectures are provided for the particular task.
发表于 2025-3-29 09:20:25 | 显示全部楼层
Combined Feature Representation for Emotion Classification from Russian Speechvantage of both methods. This paper proposes to obtain low-level feature representation feeding frame-level descriptor sequences to a Long Short-Term Memory (LSTM) network, combine the outcome with the Principal Component Analysis (PCA) representation of utterance-level features, and make the final prediction with a logistic regression classifier.
发表于 2025-3-29 11:35:17 | 显示全部楼层
发表于 2025-3-29 18:10:18 | 显示全部楼层
Morpheme Level Word Embeddingriments. Firstly, we describe how to build morpheme extractor from prepared vocabularies. Our extractor reached 91% accuracy on the vocabularies of known morpheme segmentation. Secondly we show the way how it can be applied for NLP tasks, and then we discuss our results, pros and cons, and our future work.
发表于 2025-3-29 21:20:26 | 显示全部楼层
发表于 2025-3-30 01:02:02 | 显示全部楼层
发表于 2025-3-30 06:36:33 | 显示全部楼层
Tanmay,Lakshmi,Vijay Kumar Soni,Adarsh KumarFacebook status updates to extract interpretable features that we then use to identify Facebook users with certain negative psychological traits (the so-called Dark Triad: narcissism, psychopathy, and Machiavellianism) and to find the themes that are most important to such individuals.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-23 01:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表