用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence and Natural Language; 6th Conference, AINL Andrey Filchenkov,Lidia Pivovarova,Jan Žižka Conference proceedings 2018

[复制链接]
楼主: 巡洋
发表于 2025-3-25 05:56:04 | 显示全部楼层
发表于 2025-3-25 10:40:14 | 显示全部楼层
Andrey Filchenkov,Lidia Pivovarova,Jan ŽižkaIncludes supplementary material:
发表于 2025-3-25 14:07:51 | 显示全部楼层
Communications in Computer and Information Sciencehttp://image.papertrans.cn/b/image/162256.jpg
发表于 2025-3-25 17:14:18 | 显示全部楼层
发表于 2025-3-25 21:59:03 | 显示全部楼层
978-3-319-71745-6Springer International Publishing AG 2018
发表于 2025-3-26 01:40:13 | 显示全部楼层
Semantic Feature Aggregation for Gender Identification in Russian Facebook Russian. We collect Facebook posts of Russian-speaking users and apply them as a dataset for two topic modelling techniques and a distributional clustering approach. The output of the algorithms is applied as a feature aggregation method in a task of gender classification based on a smaller Faceboo
发表于 2025-3-26 07:06:34 | 显示全部楼层
Using Linguistic Activity in Social Networks to Predict and Interpret Dark Psychological Traitsanging from psychology to marketing, but there are very few works of this kind on Russian-speaking samples. We use Latent Dirichlet Allocation on the Facebook status updates to extract interpretable features that we then use to identify Facebook users with certain negative psychological traits (the
发表于 2025-3-26 12:13:06 | 显示全部楼层
发表于 2025-3-26 14:53:53 | 显示全部楼层
Deep Learning for Acoustic Addressee Detection in Spoken Dialogue Systemsspeech addressed to real humans. In this work, several modalities were analyzed, and acoustic data has been chosen as the main modality by reason of the most flexible usability in modern SDSs. To resolve the problem of addressee detection, deep learning methods such as fully-connected neural network
发表于 2025-3-26 17:36:53 | 显示全部楼层
Deep Neural Networks in Russian Speech Recognitionts. We propose applying various DNNs in automatic recognition of Russian continuous speech. We used different neural network models such as Convolutional Neural Networks (CNNs), modifications of Long short-term memory (LSTM), Residual Networks and Recurrent Convolutional Networks (RCNNs). The presen
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-15 19:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表