找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Arithmetic and Geometry; Papers Dedicated to Michael Artin,John Tate Book 1983 Springer Science+Business Media New York 1983 Multiplicatio

[复制链接]
楼主: 巡洋
发表于 2025-3-23 12:37:14 | 显示全部楼层
Zeta-Functions of Varieties Over Finite Fields at s=1,Let . be a finite field of cardinality . = ... Let.be a fixed algebraic closure of .. Let . be a smooth projective algebraic variety of dimension . over . such that.is connected.
发表于 2025-3-23 15:03:24 | 显示全部楼层
The Torelli Theorem for Ordinary K3 Surfaces over Finite Fields,Shafarevich’s and Piatetski-Shapiro’s proof of the Torelli theorem for K3 surfaces over C [13] is one of the most beautiful proofs in complex algebraic geometry.
发表于 2025-3-23 20:03:53 | 显示全部楼层
发表于 2025-3-23 22:30:00 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-9284-3Multiplication; arithmetic; automorphic forms; automorphism; cohomology; polynomial; torsion
发表于 2025-3-24 03:02:48 | 显示全部楼层
发表于 2025-3-24 07:26:54 | 显示全部楼层
发表于 2025-3-24 13:34:41 | 显示全部楼层
发表于 2025-3-24 15:10:34 | 显示全部楼层
Fracture Toughness Correlations,al point) is finitely generated. His proof was somewhat indirect. In 1928 Weil [5] in his thesis generalized Mordell’s result to abelian varieties of any dimension and to any algebraic number field as ground field. At the same time, Weil [6] gave a very simple and elegant proof of Mordell’s original
发表于 2025-3-24 19:33:45 | 显示全部楼层
发表于 2025-3-25 00:54:20 | 显示全部楼层
Linear Elastic Fracture Mechanics,as worked on the arithmetic of elliptic curves is acutely aware, it is still dominated today, despite its long and rich history, by a wealth of tantilizing conjectures, which are convincingly supported by numerical evidence. The most important amongst these conjectures, at least from the point of vi
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 09:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表