找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Arithmetic and Geometry; Papers Dedicated to Michael Artin,John Tate Book 1983 Springer Science+Business Media New York 1983 Multiplicatio

[复制链接]
楼主: 巡洋
发表于 2025-3-27 00:13:49 | 显示全部楼层
发表于 2025-3-27 03:48:25 | 显示全部楼层
,Generators of the Néron-Severi Group of a Fermat Surface,vial work before one can determine the Picard number of a given variety, let alone the full structure of its Néron-Severi group. This is the case even for algebraic surfaces over the field of complex numbers, where it can be regarded as the subgroup of the cohomology group ..(., ℤ) characterized by the Lefschetz criterion.
发表于 2025-3-27 07:34:31 | 显示全部楼层
The Action of an Automorphism of , On a Shimura Variety and its Special Points,he proof is extended to cover all Shimura varieties. As a consequence, one obtains a complete proof of Shimura’s conjecture on the existence of canonical models. The main new ingredients in the proof are the results of Kazhdan [7] and the methods of Borovoi [2].
发表于 2025-3-27 11:26:25 | 显示全部楼层
发表于 2025-3-27 13:56:45 | 显示全部楼层
Linear Elastic Fracture Mechanics, is to conjecture such bounds for a suitable basis. Indeed, .⊗.(.) is a vector space over . with a positive definite quadratic form given by the Néron-Tate height: if . is defined by the equation ., and . = (.) is a rational point with . = . written as a fraction in lowest form, then one defines the .-height ..
发表于 2025-3-27 18:14:03 | 显示全部楼层
发表于 2025-3-28 00:40:04 | 显示全部楼层
发表于 2025-3-28 04:33:29 | 显示全部楼层
发表于 2025-3-28 06:56:07 | 显示全部楼层
https://doi.org/10.1007/b118073fact, recently Ogus has used these results to apply the basic Rudakov-Shafarevich result on existence and smoothness of moduli for K3 surfaces in characteristic . to the study of the moduli space when . = 2.
发表于 2025-3-28 13:51:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 09:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表