找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Invitation to Quantum Cohomology; Kontsevich‘s Formula Joachim Kock,Israel Vainsencher Textbook 2007 Birkhäuser Boston 2007 Grad.algebra

[复制链接]
楼主: injurious
发表于 2025-3-25 05:26:28 | 显示全部楼层
Prologue: Warming Up with Cross Ratios, and the Definition of Moduli Space,Throughout this book we work over the field of complex numbers. When we speak of schemes we mean schemes of finite type over Spec ℂ.
发表于 2025-3-25 09:15:24 | 显示全部楼层
发表于 2025-3-25 12:22:33 | 显示全部楼层
发表于 2025-3-25 15:52:54 | 显示全部楼层
,Gromov—Witten Invariants,The intersection numbers resulting from an ideal transverse situation as in Proposition 3.4.3. are the (genus-0) .. In Section 4.2 we establish the basic properties of Gromov-Witten invariants, and in 4.3 and 4.4 we describe recursive relations among them, allowing for their computation.
发表于 2025-3-25 22:51:56 | 显示全部楼层
发表于 2025-3-26 04:08:50 | 显示全部楼层
Stable ,-pointed Curves,nherited from ., the important Deligne-Mumford-Knudsen moduli space of stable .-pointed rational curves which are the subject of this first chapter. We shall not go into the detail of the construction of ., but content ourselves with the cases .≤5. The combinatorics of the boundary deserves a carefu
发表于 2025-3-26 07:45:03 | 显示全部楼层
Quantum Cohomology,define a . on .. Kontsevich’s formula and the other recursions we found in Chapter 4, are then interpreted as partial differential equations for the Gromov-Witten potential. The striking fact about all these equations is that they amount to the associativity of the quantum product! In particular, Ko
发表于 2025-3-26 09:46:31 | 显示全部楼层
发表于 2025-3-26 14:29:38 | 显示全部楼层
发表于 2025-3-26 16:48:36 | 显示全部楼层
Conference proceedings 2016and Intelligent RecognitionSystems (SIRS-2015), December 16-19, 2015, Trivandrum, India. The programcommittee received 175 submissions. Each paper was peer reviewed by at leastthree or more independent referees of the program committee and the 59 paperswere finally selected. The papers offer stimula
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-30 08:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表