找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Invitation to Quantum Cohomology; Kontsevich‘s Formula Joachim Kock,Israel Vainsencher Textbook 2007 Birkhäuser Boston 2007 Grad.algebra

[复制链接]
查看: 53391|回复: 38
发表于 2025-3-21 16:07:38 | 显示全部楼层 |阅读模式
期刊全称An Invitation to Quantum Cohomology
期刊简称Kontsevich‘s Formula
影响因子2023Joachim Kock,Israel Vainsencher
视频videohttp://file.papertrans.cn/156/155646/155646.mp4
发行地址Elementary introduction to stable maps and quantum cohomology presents the problem of counting rational plane curves.Viewpoint is mostly that of enumerative geometry.Emphasis is on examples, heuristic
学科分类Progress in Mathematics
图书封面Titlebook: An Invitation to Quantum Cohomology; Kontsevich‘s Formula Joachim Kock,Israel Vainsencher Textbook 2007 Birkhäuser Boston 2007 Grad.algebra
影响因子This book is an elementary introduction to some ideas and techniques that have revolutionized enumerative geometry: stable maps and quantum cohomology. A striking demonstration of the potential of these techniques is provided by Kont- vich‘s famous formula, which solves a long-standing question: How many plane rational curves of degree d pass through 3d — 1 given points in general position? The formula expresses the number of curves for a given degree in terms of the numbers for lower degrees. A single initial datum is required for the recursion, namely, the case d = I, which simply amounts to the fact that through two points there is but one line. Assuming the existence of the Kontsevich spaces of stable maps and a few of their basic properties, we present a complete proof of the formula, and use the formula as a red thread in our Invitation to Quantum Cohomology. For more information about the mathematical content, see the Introduction. The canonical reference for this topic is the already classical Notes on Stable Maps and Quantum Cohomology by Fulton and Pandharipande [29], cited henceforth as FP-NOTES. We have traded greater generality for the sake of introducing some simplifi
Pindex Textbook 2007
The information of publication is updating

书目名称An Invitation to Quantum Cohomology影响因子(影响力)




书目名称An Invitation to Quantum Cohomology影响因子(影响力)学科排名




书目名称An Invitation to Quantum Cohomology网络公开度




书目名称An Invitation to Quantum Cohomology网络公开度学科排名




书目名称An Invitation to Quantum Cohomology被引频次




书目名称An Invitation to Quantum Cohomology被引频次学科排名




书目名称An Invitation to Quantum Cohomology年度引用




书目名称An Invitation to Quantum Cohomology年度引用学科排名




书目名称An Invitation to Quantum Cohomology读者反馈




书目名称An Invitation to Quantum Cohomology读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:21:57 | 显示全部楼层
发表于 2025-3-22 03:06:20 | 显示全部楼层
R. Beer,G. C. Loeschcke,G. Fank,Ch. Hechte shall not go into the detail of the construction of ., but content ourselves with the cases .≤5. The combinatorics of the boundary deserves a careful description. The principal reference for this chapter is Knudsen [51]; see also Keel [47].
发表于 2025-3-22 06:26:08 | 显示全部楼层
F. Hoffmeister,E. Grünvogel,W. Wirthromov-Witten potential. The striking fact about all these equations is that they amount to the associativity of the quantum product! In particular, Kontsevich’s formula is equivalent to associativity of the quantum product of ..
发表于 2025-3-22 09:00:47 | 显示全部楼层
发表于 2025-3-22 13:27:57 | 显示全部楼层
Quantum Cohomology,romov-Witten potential. The striking fact about all these equations is that they amount to the associativity of the quantum product! In particular, Kontsevich’s formula is equivalent to associativity of the quantum product of ..
发表于 2025-3-22 20:14:45 | 显示全部楼层
An Invitation to Quantum Cohomology978-0-8176-4495-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-23 00:47:26 | 显示全部楼层
发表于 2025-3-23 03:28:04 | 显示全部楼层
https://doi.org/10.1007/978-0-8176-4495-6Grad; algebraic geometry; cohomology; homology; moduli space
发表于 2025-3-23 08:52:59 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-30 08:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表