找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to the Kähler-Ricci Flow; Sebastien Boucksom,Philippe Eyssidieux,Vincent Gue Book 2013 Springer International Publishing S

[复制链接]
楼主: minuscule
发表于 2025-3-25 04:44:11 | 显示全部楼层
发表于 2025-3-25 10:47:57 | 显示全部楼层
Introduction,This book is the first comprehensive reference on the Kähler–Ricci flow. It provides an introduction to fully non-linear parabolic equations, to the Kähler–Ricci flow in general and to Perelman’s estimates in the Fano case, and also presents the connections with the Minimal Model program.
发表于 2025-3-25 12:06:56 | 显示全部楼层
An Introduction to Fully Nonlinear Parabolic Equations,efficients, some existence, uniqueness and regularity results for viscosity solutions of fully nonlinear parabolic equations (including degenerate ones), the Harnack inequality for fully nonlinear uniformly parabolic equations.
发表于 2025-3-25 18:14:26 | 显示全部楼层
发表于 2025-3-25 22:33:48 | 显示全部楼层
发表于 2025-3-26 01:39:15 | 显示全部楼层
发表于 2025-3-26 04:47:28 | 显示全部楼层
发表于 2025-3-26 09:59:02 | 显示全部楼层
Sebastien Boucksom,Philippe Eyssidieux,Vincent GueAn educational and up-to-date reference work on non-linear parabolic partial differential equations.The only book currently available on the Kähler-Ricci flow.The first book to present a complete proo
发表于 2025-3-26 13:02:45 | 显示全部楼层
发表于 2025-3-26 19:23:34 | 显示全部楼层
0075-8434 on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of978-3-319-00818-9978-3-319-00819-6Series ISSN 0075-8434 Series E-ISSN 1617-9692
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 03:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表