找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to the Kähler-Ricci Flow; Sebastien Boucksom,Philippe Eyssidieux,Vincent Gue Book 2013 Springer International Publishing S

[复制链接]
楼主: minuscule
发表于 2025-3-23 09:41:42 | 显示全部楼层
,Convergence of the Kähler–Ricci Flow on a Kähler–Einstein Fano Manifold, automorphism group, the normalized Kähler–Ricci flow converges smoothly to the unique Kähler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularitie
发表于 2025-3-23 16:59:54 | 显示全部楼层
Einleitung und Problemstellung,efficients, some existence, uniqueness and regularity results for viscosity solutions of fully nonlinear parabolic equations (including degenerate ones), the Harnack inequality for fully nonlinear uniformly parabolic equations.
发表于 2025-3-23 20:03:27 | 显示全部楼层
发表于 2025-3-23 22:41:05 | 显示全部楼层
发表于 2025-3-24 06:13:53 | 显示全部楼层
,Technologien für Digitalisierungslösungen,F in its first 20 years (1984–2003), especially an essentially self-contained exposition of Perelman’s uniform estimates on the scalar curvature, the diameter, and the Ricci potential function for the normalized Kähler–Ricci flow (NKRF), including the monotonicity of Perelman’s .-entropy and .-nonco
发表于 2025-3-24 09:04:11 | 显示全部楼层
Roadmap einer nachhaltigen Digitalisierung, automorphism group, the normalized Kähler–Ricci flow converges smoothly to the unique Kähler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularitie
发表于 2025-3-24 14:04:16 | 显示全部楼层
发表于 2025-3-24 15:18:23 | 显示全部楼层
发表于 2025-3-24 19:52:25 | 显示全部楼层
发表于 2025-3-25 00:35:35 | 显示全部楼层
Roadmap einer nachhaltigen Digitalisierung, automorphism group, the normalized Kähler–Ricci flow converges smoothly to the unique Kähler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularities.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 03:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表