找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: An Introduction to the Kähler-Ricci Flow; Sebastien Boucksom,Philippe Eyssidieux,Vincent Gue Book 2013 Springer International Publishing S

[复制链接]
查看: 15624|回复: 37
发表于 2025-3-21 18:07:50 | 显示全部楼层 |阅读模式
期刊全称An Introduction to the Kähler-Ricci Flow
影响因子2023Sebastien Boucksom,Philippe Eyssidieux,Vincent Gue
视频video
发行地址An educational and up-to-date reference work on non-linear parabolic partial differential equations.The only book currently available on the Kähler-Ricci flow.The first book to present a complete proo
学科分类Lecture Notes in Mathematics
图书封面Titlebook: An Introduction to the Kähler-Ricci Flow;  Sebastien Boucksom,Philippe Eyssidieux,Vincent Gue Book 2013 Springer International Publishing S
影响因子.This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research.. .The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation)..As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of
Pindex Book 2013
The information of publication is updating

书目名称An Introduction to the Kähler-Ricci Flow影响因子(影响力)




书目名称An Introduction to the Kähler-Ricci Flow影响因子(影响力)学科排名




书目名称An Introduction to the Kähler-Ricci Flow网络公开度




书目名称An Introduction to the Kähler-Ricci Flow网络公开度学科排名




书目名称An Introduction to the Kähler-Ricci Flow被引频次




书目名称An Introduction to the Kähler-Ricci Flow被引频次学科排名




书目名称An Introduction to the Kähler-Ricci Flow年度引用




书目名称An Introduction to the Kähler-Ricci Flow年度引用学科排名




书目名称An Introduction to the Kähler-Ricci Flow读者反馈




书目名称An Introduction to the Kähler-Ricci Flow读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:42:10 | 显示全部楼层
0075-8434 Kähler-Ricci flow.The first book to present a complete proo.This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excel
发表于 2025-3-22 03:12:56 | 显示全部楼层
发表于 2025-3-22 04:34:01 | 显示全部楼层
发表于 2025-3-22 11:07:04 | 显示全部楼层
,Technologien für Digitalisierungslösungen,ference talks, including “Einstein Manifolds and Beyond” at CIRM (Marseille—Luminy, fall 2007), “Program on Extremal Kähler Metrics and Kähler–Ricci Flow” at the De Giorgi Center (Pisa, spring 2008), and “Analytic Aspects of Algebraic and Complex Geometry” at CIRM (Marseille— Luminy, spring 2011).
发表于 2025-3-22 15:34:11 | 显示全部楼层
,The Kähler–Ricci Flow on Fano Manifolds,ference talks, including “Einstein Manifolds and Beyond” at CIRM (Marseille—Luminy, fall 2007), “Program on Extremal Kähler Metrics and Kähler–Ricci Flow” at the De Giorgi Center (Pisa, spring 2008), and “Analytic Aspects of Algebraic and Complex Geometry” at CIRM (Marseille— Luminy, spring 2011).
发表于 2025-3-22 18:06:05 | 显示全部楼层
发表于 2025-3-22 23:26:05 | 显示全部楼层
,An Introduction to the Kähler–Ricci Flow,or the flow, convergence on manifolds with negative and zero first Chern class, and behavior of the flow in the case when the canonical bundle is big and nef. We also discuss the collapsing of the Kähler–Ricci flow on the product of a torus and a Riemann surface of genus greater than one. Finally, w
发表于 2025-3-23 01:59:43 | 显示全部楼层
,Regularizing Properties of the Kähler–Ricci Flow,zing the work of Song and Tian on this topic. This result is applied to construct a Kähler–Ricci flow on varieties with log terminal singularities, in connection with the Minimal Model Program. The same circle of ideas is also used to prove a regularity result for elliptic complex Monge–Ampère equat
发表于 2025-3-23 08:10:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 02:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表