找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithms in Real Algebraic Geometry; Saugata Basu,Richard Pollack,Marie-Franco̧ise Roy Textbook 20031st edition Springer-Verlag Berlin H

[复制链接]
楼主: 调停
发表于 2025-3-30 08:28:51 | 显示全部楼层
发表于 2025-3-30 15:13:52 | 显示全部楼层
Computing Roadmaps and Connected Components of Semi-algebraic Sets,s provided by cylindrical decomposition in Chapter 12 for the problem of deciding connectivity properties of semi-algebraic sets (single exponential in the number of variables rather than doubly exponential).
发表于 2025-3-30 19:47:19 | 显示全部楼层
1431-1550 real algebraic geometry such as real root counting, deciding the existence of solutions of systems of polynomial equations and inequalities, or deciding whether two points belong in the same connected component of a semi-algebraic set occur in many contexts. In this first-ever graduate textbook on t
发表于 2025-3-31 00:27:30 | 显示全部楼层
发表于 2025-3-31 01:05:57 | 显示全部楼层
发表于 2025-3-31 05:54:32 | 显示全部楼层
Der entschlüsselte Wachstumscode In the next section, we algebraically characterize systems of polynomials with a finite number of solutions and prove that the corresponding quotient rings are finite dimensional vector spaces. We end the chapter defining projective space and proving a weak version of Bézout’s theorem.
发表于 2025-3-31 12:26:49 | 显示全部楼层
Fritz Kröger,Michael Träm,James McGrathr homology that applies only to simplicial complexes. In the second section, we show how to extend this theory to closed semi-algebraic sets using the triangulation theorem proved in Chapter 5. Finally, in the third section we define the Euler-Poincare characteristic for locally closed semi-algebraic sets.
发表于 2025-3-31 13:30:37 | 显示全部楼层
,Einleitung – Herangehen und Aufbau,atic forms. In Section 3, we study remainder sequences and the related notion of subresultant polynomials. The algorithms in this chapter are very basic and will be used throughout the other chapters of the book.
发表于 2025-3-31 17:34:30 | 显示全部楼层
发表于 2025-3-31 22:53:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 02:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表