找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Algorithms in Real Algebraic Geometry; Saugata Basu,Richard Pollack,Marie-Franco̧ise Roy Textbook 20031st edition Springer-Verlag Berlin H

[复制链接]
楼主: 调停
发表于 2025-3-26 23:39:36 | 显示全部楼层
发表于 2025-3-27 03:48:16 | 显示全部楼层
发表于 2025-3-27 05:59:03 | 显示全部楼层
发表于 2025-3-27 10:47:52 | 显示全部楼层
发表于 2025-3-27 14:58:41 | 显示全部楼层
发表于 2025-3-27 19:08:19 | 显示全部楼层
发表于 2025-3-27 23:50:13 | 显示全部楼层
Eine Ikonologie des Schulanfangs,ether two points belong to the same connected component. Done in a parametric way the roadmap algorithm also gives a description of the semi-algebraically connected components of an algebraic set. The complexities of the algorithms given in this chapter are much better than the one provided by cylin
发表于 2025-3-28 04:00:35 | 显示全部楼层
https://doi.org/10.1007/978-3-531-91698-9s provided by cylindrical decomposition in Chapter 12 for the problem of deciding connectivity properties of semi-algebraic sets (single exponential in the number of variables rather than doubly exponential).
发表于 2025-3-28 07:53:40 | 显示全部楼层
Algebraically Closed Fields,remainder sequences and, for the case where the coefficients have parameters, the tree of possible pseudo-remainder sequences and the set of possible greatest common divisors. Several important applications of logical nature of the projection theorem are given.
发表于 2025-3-28 12:35:12 | 显示全部楼层
Real Closed Fields,ets and prove that the projection of a semi-algebraic set is semi-algebraic. This is done using a parametric version of real root counting techniques described in the second section. The fourth section is devoted to several important applications of the projection theorem, of logical and geometric n
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 01:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表