找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Visualization and Processing of Higher Order Descriptors for Multi-Valued Data; Ingrid Hotz,Thomas Schultz Conference proceedings 2015 Spr

[复制链接]
楼主: Daidzein
发表于 2025-3-25 04:06:29 | 显示全部楼层
发表于 2025-3-25 09:49:30 | 显示全部楼层
发表于 2025-3-25 11:56:47 | 显示全部楼层
发表于 2025-3-25 18:30:19 | 显示全部楼层
发表于 2025-3-25 20:16:09 | 显示全部楼层
Visualization of Diffusion Propagator and Multiple Parameter Diffusion Signal multiple b-values, multiple orientations and multiple diffusion times. These new and demanding acquisitions go beyond classical diffusion tensor imaging (DTI) and single b-value high angular resolution diffusion imaging (HARDI) acquisitions. Recent studies show that such multiple parameter diffusio
发表于 2025-3-26 03:31:04 | 显示全部楼层
发表于 2025-3-26 04:49:45 | 显示全部楼层
发表于 2025-3-26 09:03:14 | 显示全部楼层
Visualizing Symmetric Indefinite 2D Tensor Fields Using the Heat Kernel Signaturee, and multiscale nature, it has been successfully applied in many geometric applications. From a more general point of view, the HKS can be considered as a descriptor of the metric of a Riemannian manifold. Given a symmetric positive definite tensor field we may interpret it as the metric of some R
发表于 2025-3-26 13:54:46 | 显示全部楼层
A Framework for the Analysis of Diffusion Compartment Imaging (DCI)e gained in vivo by means of diffusion-weighted imaging that is sensitive to the local patterns of diffusion of water molecules throughout the brain. Diffusion compartment imaging (DCI) provides a separate parameterization for the diffusion signal arising from each compartment of water molecules at
发表于 2025-3-26 20:28:59 | 显示全部楼层
Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Dn. In this chapter, we survey two broad families of approaches to quantitative analysis of neuroimaging data: statistical testing and machine learning. We discuss how methods developed for traditional scalar structural neuroimaging data have been extended to diffusion magnetic resonance imaging data
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 08:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表